杳杳不失眠
码龄5年
关注
提问 私信
  • 博客:4,648
    社区:1
    4,649
    总访问量
  • 5
    原创
  • 677,455
    排名
  • 1
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2020-04-22
博客简介:

weixin_47269893的博客

查看详细资料
个人成就
  • 获得2次点赞
  • 内容获得6次评论
  • 获得11次收藏
创作历程
  • 5篇
    2023年
成就勋章
TA的专栏
  • 记录VadCLIP和BN-WVAD
  • 报错记录
    1篇
兴趣领域 设置
  • 人工智能
    计算机视觉机器学习人工智能神经网络pytorch图像处理
创作活动更多

AI大模型如何赋能电商行业,引领变革?

如何使用AI技术实现购物推荐、会员分类、商品定价等方面的创新应用?如何运用AI技术提高电商平台的销售效率和用户体验呢?欢迎分享您的看法

175人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

解决tuple转torch.tensor报错:ValueError: too many dimensions ‘str‘

解决办法:使用列表推导式和字符串分割操作来处理每个标签字符串。将这些数字转换为整数类型。然后,将结果放入一个列表中,并使用。将每个标签字符串分割成数字,并使用。
原创
发布博客 2023.09.13 ·
2381 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

Dynamic Support Network for Few-ShotClass Incremental Learning论文笔记

少样本类别增量学习面临着灾难性遗忘旧类别和过拟合新类别的挑战。分析表明,这些问题是由于特征分布崩溃造成的,当将少量样本连续嵌入到固定的特征空间时,会导致类混淆。作者提出了一个动态支持网络Dynamic Support Network(DSN),它是一个具有压缩节点扩展的自适应更新网络来“支持”特征空间。在每个训练环节中,DSN暂时扩展网络节点,以扩大增量类的特征表示能力。然后通过节点自激活动态压缩扩展的网络,追求紧凑的特征表示,从而缓解了过拟合。
原创
发布博客 2023.03.29 ·
562 阅读 ·
1 点赞 ·
1 评论 ·
1 收藏

Few-Shot Class-Incremental Learning from anOpen-Set Perspective论文笔记

一个Few-Shot Class-Incremental Learning (FSCIL)模型,需要在所有类上表现良好,无论它们的表示顺序如何或是否缺乏数据。它还需要对需要对较少的数据 (one-shot scenario) 具有鲁棒性,并且容易适应该领域出现的新任务目前的SOTA方法仅使用class-wise average accuracy类平均精度来评价模型的性能,无法评估是否由于类不平衡和数据不平衡存在prediction bias预测偏差;
原创
发布博客 2023.03.27 ·
875 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

Open-world Learning and Application to Product Classification论文笔记

论文提出模型应该满足:(1)拒绝未知类别(没有在训练中出现)的样本;(2)逐步学习未知类别以扩展现有的模型这称为open-world learning(OWL),论文提出一个基于元学习(meta-learning)的OWL方法,关键的新颖之处在于,该模型维护了一组动态的可见类别,允许在没有重新训练模型的情况下,添加或删除新的类别。
原创
发布博客 2023.03.17 ·
410 阅读 ·
0 点赞 ·
1 评论 ·
3 收藏

Lesion-Aware Transformer for Diabetic Retinopathy Grading论文笔记

Lesion-Aware Transformer for Diabetic Retinopathy Grading论文笔记
原创
发布博客 2023.03.06 ·
420 阅读 ·
1 点赞 ·
3 评论 ·
3 收藏