【吴恩达 Machine Learning】 第一课 Week 2 学习笔记

Week 2

3.1 多维特征

1)符号表示

X j X_j Xj:第 j j j个特征

n n n:特征的总数

x ⃗ ( i ) \vec{x}^{(i)} x (i):包含第 i i i 个训练示例的所有特征向量

x ⃗ j ( i ) \vec{x}_j^{(i)} x j(i):包含第 i i i 个训练示例的所有特征向量的第 j j j 个特征

在这里插入图片描述

2)多元线性回归

在这里插入图片描述在这里插入图片描述

3)向量化

计算机硬件可以并行工作,所以向量化后运行速度快。

在这里插入图片描述
在这里插入图片描述

4)梯度下降

在这里插入图片描述在这里插入图片描述

3.2 特征缩放

1)示例

示例:购房问题中, x 1 x_1 x1表示房屋尺寸, x 2 x_2 x2表示卧室数量

在这里插入图片描述

没经过特征缩放的效果:

在这里插入图片描述

等高线细长可能导致梯度下降时回来会横跳很长时间。

经过特征缩放的效果:

在这里插入图片描述

2)特征缩放的实现

在这里插入图片描述

3)均值归一化

可能会出现负值

首先找到平均值,也称训练集上的均值,用μ表示

分子: x − μ x-μ xμ,分母: m a x − m i n max-min maxmin

在这里插入图片描述

4)Z-score归一化

计算每个特征的标准差σ和平均值μ
在这里插入图片描述
在这里插入图片描述

3.3 梯度下降收敛判断

看学习曲线可以发现,300次迭代时的效果和后面的差不多,意味着梯度下降或多或少收敛了,因为曲线不再下降。

在这里插入图片描述

也可以通过自动收敛测试判断,但是正确的阈值ε的值不好确定。

3.4 学习率设置

验证是否有bug:将 α α α设置为一个非常小的数字,看看是否会导致成本降低。如果 α α α很小但是成本有时增加,则表示代码中存在错误。

在这里插入图片描述在这里插入图片描述

3.5 特征工程

设计新的特征,通过转换或组合问题的原始特征来使学习算法更容易做出准确地预测。

在这里插入图片描述

3.6 多项式回归

特征工程很重要,不然出现高次幂就指数爆炸了。

在这里插入图片描述在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值