VectorBT量化入门系列:第三章 VectorBT策略回测基础

VectorBT量化入门系列:第三章 VectorBT策略回测基础

本教程专为中高级开发者设计,系统讲解VectorBT技术在量化交易中的应用。通过结合Tushare数据源和TA-Lib技术指标,深度探索策略开发、回测优化与风险评估的核心方法。从数据获取到策略部署,全面提升量化交易能力,助力开发者构建高效、稳健的交易系统。
文中内容仅限技术学习与代码实践参考,市场存在不确定性,技术分析需谨慎验证,不构成任何投资建议。适合量化新手建立系统认知,为策略开发打下基础。

VectorBT

学习对象

  • 中高级水平的开发者和数据分析师
  • 具备 Python 编程基础和一定的数据分析能力
  • 对量化交易和金融数据处理有一定了解
  • 熟悉 A 股市场,了解 Tushare 数据源和 TA-Lib 技术指标

教程目标

  • 系统学习 VectorBT 技术,掌握其在量化交易中的应用
  • 熟练使用 Tushare 数据源获取 A 股市场数据,并使用 Parquet 文件存储
  • 掌握基于 VectorBT 的策略开发、回测和性能评估流程
  • 学会使用 TA-Lib 计算技术指标,并将其应用于交易策略
  • 理解并实现多因子策略、机器学习策略等高级策略
  • 掌握策略优化、风险管理以及策略组合的方法
  • 能够独立构建和评估量化交易策略,并部署到生产环境

教程目录

第一章 VectorBT基础与环境搭建

1.1 VectorBT简介与应用场景
1.2 环境搭建与依赖安装
1.3 数据源与Tushare集成
1.4 数据存储与Parquet文件格式

第二章 VectorBT核心功能与数据处理

2.1 数据加载与预处理
2.2 时间序列数据处理
2.3 技术指标计算与TA-Lib集成
2.4 数据可视化与探索性分析

第三章 VectorBT策略回测基础

3.1 策略定义与实现
3.2 回测流程与关键参数
3.3 性能评估指标与解读
3.4 策略优化与参数调整

第四章 高级策略开发与优化

4.1 多因子策略开发
4.2 机器学习策略集成
4.3 风险管理与交易成本模拟
4.4 策略组合与资产配置

第五章 VectorBT性能评估与分析

5.1 性能评估框架
5.2 统计指标与回测报告
5.3 敏感性分析与压力测试
5.4 策略对比与选择标准

第六章 VectorBT实战案例

6.1 策略逻辑
6.2 实现步骤
6.3 代码执行
6.4 结果分析

第三章 VectorBT策略回测基础

本章将介绍如何使用VectorBT进行策略回测,包括策略定义、回测流程、性能评估指标以及策略优化。通过本章的学习,你将掌握VectorBT在策略开发中的核心应用。

3.1 策略定义与实现

在量化交易中,策略是核心。VectorBT提供了一个简洁的API来定义和实现交易策略。

3.1.1 定义交易信号

交易信号是策略的基础,通常包括入场信号和出场信号。我们将使用移动平均线交叉作为示例。

import vectorbt as vbt
import pandas as pd
import talib


def generate_signals(
    df: pd.DataFrame, fast_window: int = 10, slow_window: int = 30
) -> pd.DataFrame:
    """生成交易信号。

    :param df: 输入的DataFrame
    :param fast_window: 快线窗口大小
    :param slow_window: 慢线窗口大小
    :return: 包含交易信号的DataFrame
    """
    # 计算快线和慢线的移动平均线
    df["fast_ma"] = talib.SMA(df["close"], timeperiod=fast_window)
    df["slow_ma"] = talib.SMA(df["close"], timeperiod=slow_window)

    df["signal"] = np.where(
        (df["fast_ma"] > df["slow_ma"])
        & (df["fast_ma"].shift(1) <= df["slow_ma"].shift(1)),  # 入场信号
        1,
        np.where(
            (df["fast_ma"] < df["slow_ma"])
            & (df["fast_ma"].shift(1) >= df["slow_ma"].shift(1)),  # 出场信号
            -1,
            0,  # 无操作
        ),
    )

    return df

3.1.2 策略实现

使用VectorBT的Portfolio类来实现策略。

def run_backtest(df: pd.DataFrame) -> vbt.Portfolio:
    """运行回测。

    :param df: 包含交易信号的DataFrame
    :return: 回测结果
    """
    # 创建投资组合
    portfolio = vbt.Portfolio.from_signals(
        close=df["close"],
        entries=df["signal"] == 1,
        exits=df["signal"] == -1,
        freq="D",  # 交易频率为日
        init_cash=100000,  # 初始资金
        fees=0.0015,  # 交易费用(千分之十五)
        slippage=0.0015,  # 滑点(千分之十五)
    )

    return portfolio

3.2 回测流程与关键参数

回测流程包括数据准备、信号生成、策略运行和性能评估。我们将通过一个完整的示例来展示这个流程。

# 示例:完整回测流程
def main_backtest(
    symbol: str,
    fast_window: int = 10,
    slow_window: int = 30,
) -> vbt.Portfolio:
    """完整回测流程。

    :param symbol: 股票代码
    :param fast_window: 快线窗口大小
    :param slow_window: 慢线窗口大小
    :return: 回测结果
    """
    # 1. 加载数据
    data = load_data_from_parquet(f"./data/{symbol}.parquet")

    # 2. 预处理数据
    data = preprocess_data(data)

    # 3. 生成交易信号
    data = generate_signals(data, fast_window, slow_window)

    # 4. 运行回测
    portfolio = run_backtest(data)

    return portfolio


# 运行回测
portfolio = main_backtest("600519.SH", fast_window=10, slow_window=30)

3.3 性能评估指标与解读

性能评估是策略开发的重要环节。VectorBT提供了丰富的指标来评估策略的表现。

3.3.1 关键性能指标

def evaluate_performance(portfolio: vbt.Portfolio) -> pd.DataFrame:
    """评估策略性能。

    :param portfolio: 回测结果
    :return: 性能报告
    """
    # 打印关键指标
    print(f"总回报率: {portfolio.total_return():.2%}")
    print(f"夏普比率: {portfolio.sharpe_ratio():.2f}")
    print(f"最大回撤: {portfolio.max_drawdown():.2%}")
    print(f"总利润: {portfolio.total_profit():.2f}")


# 评估性能
evaluate_performance(portfolio)

输出:

总回报率: 17.60%
夏普比率: 0.33
最大回撤: -39.62%
总利润: 17596.92

3.3.2 性能报告

VectorBT可以生成详细的性能报告,包括图表和统计指标。

def generate_performance_report(portfolio: vbt.Portfolio) -> None:
    """生成性能报告。

    :param portfolio: 回测结果
    :return: 性能报告
    """
    # 绘制性能图表
    portfolio.plot().show()

    # 生成性能报告
    report = portfolio.stats()

    # 打印报告
    print(f"性能报告: Moving Average Crossover Strategy")
    print(report)

    return report


# 生成性能报告
generate_performance_report(portfolio)

输出:

generate_performance_report

性能报告: Moving Average Crossover Strategy
Start                                2020-01-02 00:00:00
End                                  2024-12-31 00:00:00
Period                                1212 days 00:00:00
Start Value                                     100000.0
End Value                                  117596.917939
Total Return [%]                               17.596918
Benchmark Return [%]                           34.867257
Max Gross Exposure [%]                             100.0
Total Fees Paid                              8449.095759
Max Drawdown [%]                               39.618459
Max Drawdown Duration                  941 days 00:00:00
Total Trades                                          20
Total Closed Trades                                   19
Total Open Trades                                      1
Open Trade PnL                               -198.265356
Win Rate [%]                                   26.315789
Best Trade [%]                                 39.480445
Worst Trade [%]                               -10.252349
Avg Winning Trade [%]                          18.336525
Avg Losing Trade [%]                           -4.538039
Avg Winning Trade Duration              55 days 14:24:00
Avg Losing Trade Duration     19 days 22:17:08.571428571
Profit Factor                                    1.18851
Expectancy                                    936.588594
Sharpe Ratio                                    0.325138
Calmar Ratio                                     0.12627
Omega Ratio                                     1.073192
Sortino Ratio                                   0.479606
dtype: object

3.4 策略优化与参数调整

策略优化是提升策略表现的关键。我们将通过参数扫描来寻找最优参数。

def optimize_strategy(
    df: pd.DataFrame, fast_windows: list, slow_windows: list
) -> pd.DataFrame:
    """优化策略参数。

    :param df: 输入的DataFrame
    :param fast_windows: 快线窗口列表
    :param slow_windows: 慢线窗口列表
    :return: 包含最优参数的DataFrame
    """
    results = []

    for fast_window in fast_windows:
        for slow_window in slow_windows:
            if fast_window >= slow_window:
                continue  # 跳过无效参数组合

            # 生成信号
            data = generate_signals(df.copy(), fast_window, slow_window)

            # 运行回测
            portfolio = run_backtest(data)

            # 计算性能指标
            sharpe_ratio = portfolio.sharpe_ratio()
            total_return = portfolio.total_return()

            results.append(
                {
                    "fast_window": fast_window,
                    "slow_window": slow_window,
                    "sharpe_ratio": sharpe_ratio,
                    "total_return": total_return,
                }
            )

    # 转换为DataFrame
    results_df = pd.DataFrame(results)

    # 找到最优参数
    best_params = results_df.sort_values(by="sharpe_ratio", ascending=False).head(1)
    print(f"最优参数: {best_params}")

    return results_df


# 优化策略
results_df = optimize_strategy(
    data, fast_windows=[5, 10, 15], slow_windows=[20, 30, 40]
)

输出:

最优参数:    fast_window  slow_window  sharpe_ratio  total_return
2            5           40      0.663671      0.663842

总结

通过本章,你已经掌握了以下内容:

  1. 策略定义:如何生成交易信号并实现策略。
  2. 回测流程:从数据准备到策略运行的完整流程。
  3. 性能评估:如何评估策略的表现并生成性能报告。
  4. 策略优化:如何通过参数扫描寻找最优策略参数。

风险提示与免责声明
本文内容基于公开信息研究整理,不构成任何形式的投资建议。历史表现不应作为未来收益保证,市场存在不可预见的波动风险。投资者需结合自身财务状况及风险承受能力独立决策,并自行承担交易结果。作者及发布方不对任何依据本文操作导致的损失承担法律责任。市场有风险,投资须谨慎。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

船长Q

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值