记录下HDU-2544(Floyd最短路和Dijkstra最短路)

最路路问题

题目链接
直接就是模板题,不过最短路的算法总是忘记了

Floyd算法:

通过遍历所有中间结点k查看是否能令 i 到 j 的距离更短,我觉得甚至可以理解为一种暴力。选择一个点加入到《已经选择点集》,使用这个点更新所有两两点之间的距离,接着从剩下的《未选择点集》中选择另一个点加入其中,不断反复直到《未选择点集为空》
实际上的代码就只有几行:

void floyd() {
	for (int k = 1; k <= n; k++) {//注意这里是从中间结点开始进行的
		for (int i = 1; i <= n; i++) {
			for (int j = 1; j <= n; j++)
				if (graph[i][j] > graph[i][k] + graph[k][j])
					graph[i][j] = graph[i][k] + graph[k][j];
		}
	}
}
Dijkstra算法:

dis数组保存起点到各个点之间的距离,从《未使用点集》中找一个距离起点距离最小的点加入到《已使用点中》,将该点作为中间点进行更新起点到剩下的《未使用点集》的点之间的距离,如此反复直到《未使用点集》为空

void dijkstra() {
	int vis[Mx]; memset(vis, 0, sizeof(vis));
	int dis[Mx]; memset(dis, 0, sizeof(dis));//表示起点到各个点的距离
	for (int i = 2; i <= n; i++) {
		dis[i] = graph[1][i];//先赋予一开始的距离
	}
	dis[1] = 0;	vis[1] = 1;
	int mmin = inf, id = 0;//id为《未使用点集》中最小值的结点编号
	for (int i = 1; i <= n; i++) {
		for (int j = 1; j <= n; j++) {
			if (vis[j] == 0 && mmin > dis[j]) {
				mmin = dis[j];
				id = j;
			}
		}
		vis[id] = 1;
		//更新到《未使用点集》中的值
		for (int j = 1; j <= n; j++) {
			if (vis[j] == 0 && dis[j] > graph[id][j] + dis[id]) {
				dis[j] = graph[id][j] + dis[id];
			}
		}
	}
	printf("%d\n", dis[n]);
}

以上两种算法Floyd比较适合多源最短路,Dijkstra比较适合单源最短路,但是两种算法都不适合带有负权的图的最短路问题(SPFA算法)这个有精力再补充
先记录到这里吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值