最路路问题
题目链接
直接就是模板题,不过最短路的算法总是忘记了
Floyd算法:
通过遍历所有中间结点k查看是否能令 i 到 j 的距离更短,我觉得甚至可以理解为一种暴力。选择一个点加入到《已经选择点集》,使用这个点更新所有两两点之间的距离,接着从剩下的《未选择点集》中选择另一个点加入其中,不断反复直到《未选择点集为空》
实际上的代码就只有几行:
void floyd() {
for (int k = 1; k <= n; k++) {//注意这里是从中间结点开始进行的
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++)
if (graph[i][j] > graph[i][k] + graph[k][j])
graph[i][j] = graph[i][k] + graph[k][j];
}
}
}
Dijkstra算法:
dis数组保存起点到各个点之间的距离,从《未使用点集》中找一个距离起点距离最小的点加入到《已使用点中》,将该点作为中间点进行更新起点到剩下的《未使用点集》的点之间的距离,如此反复直到《未使用点集》为空
void dijkstra() {
int vis[Mx]; memset(vis, 0, sizeof(vis));
int dis[Mx]; memset(dis, 0, sizeof(dis));//表示起点到各个点的距离
for (int i = 2; i <= n; i++) {
dis[i] = graph[1][i];//先赋予一开始的距离
}
dis[1] = 0; vis[1] = 1;
int mmin = inf, id = 0;//id为《未使用点集》中最小值的结点编号
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
if (vis[j] == 0 && mmin > dis[j]) {
mmin = dis[j];
id = j;
}
}
vis[id] = 1;
//更新到《未使用点集》中的值
for (int j = 1; j <= n; j++) {
if (vis[j] == 0 && dis[j] > graph[id][j] + dis[id]) {
dis[j] = graph[id][j] + dis[id];
}
}
}
printf("%d\n", dis[n]);
}
以上两种算法Floyd比较适合多源最短路,Dijkstra比较适合单源最短路,但是两种算法都不适合带有负权的图的最短路问题(SPFA算法)这个有精力再补充
先记录到这里吧