生成式算法形成文档摘要案例设计及实现步骤

1基础信息

1.1 案例背景

本案例设计了一个基于生成式 AI 的文档摘要系统,该系统能够自动读取长篇文档并生成内容摘要。将使用深度学习中的 Transformer 架构和相关技术来实现这一功能。

1.2 应用场景

企业内部文档处理

学术论文快速阅读

新闻资讯汇总

法律文书分析

1.3 功能目标

支持多种文档格式(PDF、Word、纯文本)

生成不同长度的摘要(短摘要、长摘要)

保留文档核心内容和关键论

保持摘要的连贯性和可读性

2 实现步骤

2.1 数据收集与预处理

首先需要收集用于训练和测试的文档数据集。可以使用公开数据集如 CNN/Daily Mail、20 Newsgroups 等,也可以收集企业内部文档。

数据预处理流程:

文档格式转换:将不同格式的文档转换为纯文本

文本清洗:去除噪声、特殊字符和无关信息

分句与分段:将文本分割为句子和段落

标记化:将文本转换为模型可处理的标记序列

处理 PDF 文档并提取文本的Python代码:

import pdfplumber
import re

def extract_text_from_pdf(pdf_path):
    text = ""
    with pdfplumber.open(pdf_path) as pdf:
        for page in pdf.pages:
            text += page.extract_text()
    return text

def clean_text(text):
    # 去除多余空格和换行
    text = re.sub(r'\s+', ' ', text).strip()
    # 去除特殊字符
    text = re.sub(r'[^\w\s]', '', text)
    return text

# 使用示例
pdf_path = "example.pdf"
raw_text = extract_text_from_pdf(pdf_path)
cleaned_text = clean_text(raw_text)
print(cleaned_text[:500])  # 打印前500个字符

2.2 模型选择与设计

对于文档摘要任务,我们可以选择以下几种模型架构:

Encoder-Decoder 架构:使用 Transformer 的编码器处理输入文档,解码器生成摘要

预训练语言模型:如 BERT、T5、GPT 等,通过微调适应摘要任务

抽取式与生成式结合:先抽取关键句子,再通过生成式模型整合

这里我们选择 T5 模型,因为它在文本生成任务上表现出色,并且支持 "text-to-text" 的统一框架。

2.3 模型选择与微调

使用选定的数据集对模型进行微调,使其适应文档摘要任务。

训练流程:

准备训练数据:将文档和对应的摘要转换为模型输入格式

定义模型:加载预训练的 T5 模型

定义训练参数:学习率、批次大小、训练轮数等

训练模型:使用训练数据对模型进行微调

评估模型:使用验证集评估模型性能

以下是使用 Hugging Face Transformers 库微调 T5 模型的代码:

from transformers import T5Tokenizer, T5ForConditionalGeneration
from datasets import load_dataset
from transformers import Trainer, TrainingArguments

# 加载预训练模型和分词器
tokenizer = T5Tokenizer.from_pretrained("t5-base")
model = T5ForConditionalGeneration.from_pretrained("t5-base")

# 加载数据集
dataset = load_dataset("cnn_dailymail", "3.0.0")

# 预处理函数
def preprocess_function(examples):
    inputs = ["summarize: " + doc for doc in examples["article"]]
    model_inputs = tokenizer(inputs, max_length=1024, truncation=True)
    
    # 标记摘要
    labels = tokenizer(examples["highlights"], max_length=128, truncation=True)
    model_inputs["labels"] = labels["input_ids"]
    return model_inputs

# 预处理数据集
tokenized_datasets = dataset.map(preprocess_function, batched=True)

# 定义训练参数
training_args = TrainingArguments(
    output_dir="./results",
    evaluation_strategy="epoch",
    learning_rate=2e-5,
    per_device_train_batch_size=4,
    per_device_eval_batch_size=4,
    num_train_epochs=3,
    weight_decay=0.01,
)

# 定义训练器
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["validation"],
)

# 训练模型
trainer.train()

# 保存模型
model.save_pretrained("summarizer_model")
tokenizer.save_pretrained("summarizer_model")

2.4 实现文档摘要生成

使用微调后的模型实现文档摘要生成功能。

生成流程:

加载微调后的模型和分词器

对输入文档进行预处理

使用模型生成摘要

对生成的摘要进行后处理

生成摘要的代码:

from transformers import T5Tokenizer, T5ForConditionalGeneration

# 加载模型和分词器
tokenizer = T5Tokenizer.from_pretrained("summarizer_model")
model = T5ForConditionalGeneration.from_pretrained("summarizer_model")

def generate_summary(text, max_length=150, min_length=30):
    # 准备输入
    input_text = "summarize: " + text
    inputs = tokenizer(input_text, return_tensors="pt", max_length=1024, truncation=True)
    
    # 生成摘要
    outputs = model.generate(
        inputs["input_ids"],
        max_length=max_length,
        min_length=min_length,
        length_penalty=2.0,
        num_beams=4,
        early_stopping=True
    )
    
    # 解码生成的摘要
    summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return summary

# 使用示例
document = "这是一段示例文本,用于测试文档摘要生成功能。"
summary = generate_summary(document)
print("生成的摘要:", summary)

2.5 评估与优化

使用自动评估指标和人工评估相结合的方式评估摘要质量,并根据评估结果优化模型。

常用评估指标:

ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

BLEU (Bilingual Evaluation Understudy)

METEOR (Metric for Evaluation of Translation with Explicit ORdering)

以下是计算 ROUGE 指标代码:

from rouge import Rouge

def evaluate_summary(reference, generated):
    rouge = Rouge()
    scores = rouge.get_scores(generated, reference)
    return scores

# 使用示例
reference_summary = "这是参考摘要。"
generated_summary = "这是生成的摘要。"
scores = evaluate_summary(reference_summary, generated_summary)
print("ROUGE分数:", scores)

2.6 部署与集成

将训练好的模型部署为可用的服务,并集成到实际应用中。

部署方式:

作为 API 服务部署

集成到应用程序中

构建 Web 界面提供服务

使用 Flask 构建Web 服务的代码:

from flask import Flask, request, jsonify
from transformers import T5Tokenizer, T5ForConditionalGeneration

app = Flask(__name__)

# 加载模型和分词器
tokenizer = T5Tokenizer.from_pretrained("summarizer_model")
model = T5ForConditionalGeneration.from_pretrained("summarizer_model")

@app.route('/summarize', methods=['POST'])
def summarize():
    data = request.json
    text = data.get('text', '')
    max_length = data.get('max_length', 150)
    min_length = data.get('min_length', 30)
    
    if not text:
        return jsonify({"error": "No text provided"}), 400
    
    summary = generate_summary(text, max_length, min_length)
    return jsonify({"summary": summary})

def generate_summary(text, max_length, min_length):
    input_text = "summarize: " + text
    inputs = tokenizer(input_text, return_tensors="pt", max_length=1024, truncation=True)
    
    outputs = model.generate(
        inputs["input_ids"],
        max_length=max_length,
        min_length=min_length,
        length_penalty=2.0,
        num_beams=4,
        early_stopping=True
    )
    
    summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return summary

if __name__ == '__main__':
    app.run(debug=True)

3 案例扩展与优化

多语言支持:使用多语言预训练模型如 mT5

文档类型扩展:支持更多格式的文档处理

用户反馈机制:收集用户反馈,持续优化模型

摘要类型多样化:支持不同类型的摘要(信息性摘要、结构性摘要等)

与知识库结合:将外部知识融入摘要生成过程

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值