自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(324)
  • 收藏
  • 关注

原创 【Python可视化】绘制等高线图

将二维平面上的线条模式转化为数据的空间分布规律。本文给出了三种等高线绘制的Python代码,希望可以给大家一些参考。使用等高线图分析数据分布特征的核心是。

2025-12-04 11:50:10 345

原创 【Python可视化】绘制柱状-折现图

柱状图和折线图是进行数据展示的常用绘图类型,在很多情况下,研究人员会将二者结合起来以展示更加复杂的数据特征。本文展示了使用Python生成模拟数据,绘制柱状-折线图的过程,希望可以为大家提供帮助。运行Python代码后,可生成如下图像。

2025-12-04 11:40:01 136

原创 「二八法则」Python数据分析核心知识速查表

以下是《Python 数据分析核心知识速查表》,聚焦 20% 核心工具与操作,可直接保存或打印备用forif-elsedef%runnp.array()np.mean()std()sum()reshape()

2025-10-22 15:20:25 309

原创 「二八法则」学习Python数据分析需要首先掌握的20%的核心知识

Python 基础语法:掌握变量、数据类型(尤其是列表、字典)、循环、条件判断和函数定义。:数据分析的核心工具,是重中之重。:提供高效的数值计算能力,支撑 Pandas 的底层运算。:最常用的数据分析环境,用于代码编写、结果展示和报告生成。Pandas 的知识体量较大,但 80% 的工作仅需掌握以下核心功能。

2025-10-22 15:03:11 445

原创 什么是 Python 解释器?它的作用是什么

打开 命令提示符(cmd) 输入 python,会进入 “交互式解释器”(看到 >>> 提示符),此时输入 print("Hi") 并回车,解释器会立即翻译并执行这行代码,输出 Hi;解释器是 Python 代码能够运行的核心工具,其本质是 “将人类可读的 Python 代码,逐行翻译成计算机能理解的机器指令,并执行” 的程序。PyPy:注重 “执行速度” 的解释器,采用 “即时编译(JIT)” 技术,对循环密集型代码的执行效率比 CPython 高很多(但兼容性略逊于 CPython)。

2025-09-02 18:59:10 1257

原创 如何在 Windows 系统中下载并安装 Python

在 Python 官网首页,鼠标悬停在 “Downloads” 选项上,然后选择 “Windows” 操作系统对应的链接。自定义安装(可选):在安装向导中,建议勾选 “Add Python X.X to PATH” 选项,在 Windows 页面,选择适合系统架构的 Python 稳定版本,通常建议下载最新的稳定版本。右键点击 “我的电脑” 或 “此电脑”,选择 “属性”,查看系统是 32 位还是 64 位。完成安装:安装完成后,点击 “Finish” 按钮退出安装向导。

2025-09-02 18:55:43 425

原创 「数据」蓝碳研究常用数据网站

IPCC 蓝碳指南补充数据:www.ipcc.ch/publication/2013-supplement-to-the-2006-ipcc-guidelines-for-national-greenhouse-gas-inventories-wetlands/美国国家海洋和大气管理局(NOAA)沿海蓝碳评估:www.fisheries.noaa.gov/inport/item/57707。澳大利亚蓝碳生态系统(AIMS):http://imos.org.au/aodn.html。

2025-08-20 16:48:04 209

原创 如何在实际项目中选择和使用合适的Python库

文档与社区:优先选择文档完善、Stack Overflow 问题多的库(如 Pandas、Scikit-learn),避免小众库(如某些学术研究库)。实时性要求高的场景(如在线推荐):优先选择推理速度快的库(如 LightGBM 替代 XGBoost,TensorRT 优化模型)。数据预处理:Pandas(结构化数据)、Dask(大规模数据)、OpenCV(图像预处理);小规模数据(万级以内):轻量库(如 Scikit-learn)足够,无需引入复杂框架;先用轻量库快速搭建基线模型,验证业务逻辑。

2025-08-14 22:13:21 415

原创 机器学习常用Python库及其应用场景

包含了几乎所有经典的机器学习算法(如线性回归、决策树、SVM、随机森林、K-Means 等),提供统一的 API 接口,支持数据分割、特征选择、模型评估等完整流程,适合快速构建基线模型和中小型项目。:由 Google 开发的开源深度学习框架,支持静态计算图,适合构建复杂的神经网络模型(如 CNN、RNN、Transformer 等),扩展性强,适合生产环境部署。:提供大量预训练的 NLP 模型(如 BERT、GPT、T5 等),支持文本分类、翻译、摘要等任务,开箱即用。

2025-08-14 22:06:10 475

原创 Python可视化实战:Python可视化可以应用于哪些领域

在粒子轨迹模拟中,通过可视化技术可以直观呈现粒子的运动轨迹,帮助物理学家分析粒子的行为和相互作用。运用直方图、箱线图、散点图等可视化方式,能快速把握数据的分布状况、异常值情况以及变量间的相关性。用户来源分析可视化可呈现用户访问网站的来源渠道,如搜索引擎、社交媒体等,为网站推广提供参考。比赛战术可视化可展示球队在比赛中的战术安排和执行情况,为教练和球员提供分析和改进的依据。传播模型可视化能够模拟疾病的传播过程,预测疫情的发展趋势,为公共卫生决策提供依据。

2025-07-08 12:49:35 720

原创 Python可视化实战:Python可视化学习网站

有助于初学者理解代码的运行逻辑,可在浏览器中输入 Python 代码,实时查看代码的执行过程,清晰展示变量变化、内存中对象的创建和操作等,还支持 Java、C、C++ 等多种语言。:可通过搜索查找各种 Python 库的用法示例,涵盖了 Python 的大部分内置库,能找到许多与可视化相关库的实际应用案例,帮助学习者了解实际项目中的应用场景。:Matplotlib 是常用的 Python 绘图库,其官方教程提供了详细的使用说明,包含各种图表类型的绘制方法、参数设置等内容,适合深入学习。

2025-07-08 12:42:03 348

原创 Python可视化实战:带标记的折线图

带标记的折线图在日常生活中十分常见,如果使用Python实现带标记的折线图呢?下面是Python代码。

2025-06-11 17:59:05 299

原创 Python可视化实战:聚类热力图

聚类热力图是一种强大的数据可视化工具,它将数据以颜色形式展示,并通过聚类算法将相似的数据点或特征分组在一起。

2025-06-11 17:49:13 470

原创 3个月速成Python可视化实操版

学习 Matplotlib 的架构(Figure、Axes、Subplot 等),掌握创建画布、设置坐标轴、标题、图例的方法。尝试 Matplotlib 的动态图表(animation模块),制作简单动画(如数据增长动态效果)。学习 Plotly 的核心组件(go.Figure、px模块),制作可缩放、悬停提示、动画切换的图表。结合 Pandas 学习数据读取(CSV/Excel)、缺失值处理、数据转换(如归一化、分组聚合)。实操案例:清洗电商销售数据,提取关键字段(时间、销售额、品类)用于可视化。

2025-05-30 07:42:53 416

原创 三个月速成Python数据分析(每日实操版)

Python 基础(7 天,每天 2 小时):学习 Python 语言基础,包括变量、数据类型、运算符、流程控制语句(if、for、while),以及列表、字典、元组等序列操作,可通过在线课程或 Python 基础书籍学习,同时每天编写一些简单的代码示例。可通过观看 Excel 教学视频并结合实际案例练习来学习。综合项目实战(2 天,每天 2 小时):选择一个完整的数据分析项目,综合运用所学的 Python 知识和技能,从数据获取、预处理、分析到建模和可视化,完成整个项目,并撰写项目报告,总结经验和成果。

2025-05-30 07:38:13 1062

原创 Python数据分析的常用库

Matplotlib 是基础的绘图库,而 Seaborn 则是基于 Matplotlib 的高级可视化库,可用于创建美观的统计图表。作为机器学习领域的知名库,Scikit-learn 提供了分类、回归、聚类等多种机器学习算法,同时还具备模型选择和评估功能。SciPy 库在科学计算方面表现出色,提供了优化、积分、插值、信号处理等多种科学计算算法。这三个都是高性能的梯度提升框架,常用于机器学习竞赛和工业应用,能高效处理大规模数据集。Plotly 可创建交互式可视化图表,支持多种图表类型,并且能够在网页上展示。

2025-05-21 23:14:01 525

原创 Python可视化常用库

特点:Python 最基础的可视化库,提供了类似 MATLAB 的绘图接口,支持多种图表类型。特点:基于 Matplotlib 的高级可视化库,提供更美观的默认样式和统计图表。特点:专注于交互式可视化,可生成 JavaScript 驱动的网页图表。特点:Pandas 内置的可视化工具,基于 Matplotlib。特点:基于 Vega-Lite 的声明式可视化库,语法简洁。适用场景:大型数据集的交互式可视化、网页应用。适用场景:统计分析、数据分布可视化、关系图。示例:热力图、箱线图、小提琴图、成对关系图。

2025-05-21 23:02:04 430

原创 一个程序搞定Python入门语法

Python是一个十分优秀的编程语言,而学习Python最难的其实就是入门。,希望能够为刚刚入门的小伙伴提供一些帮助。

2025-05-16 10:35:11 202

原创 Python绘制极坐标图

Python绘图功能十分强大,本次Python游乐园为大家带来Python绘制极坐标图的代码,希望可以对大家有所帮助。

2025-05-07 15:11:14 702

原创 Python中如何解决绘图无法显示中文的问题

matplotlib 默认字体通常不包含中文字符,因此直接使用中文标签会显示为方块。在使用Python进行图像绘制的时候,如果标注中文很有可能会导致文字无法显示。解决这个问题其实很简单:只需要在原先的代码上添加以下代码即可。产生这种问题的原因是。

2025-05-07 15:05:18 2394

原创 结构化数据增强的生成式算法案例:客户交易数据增强

这是一个用于增强结构化客户交易数据的生成式算法。这种类型的数据增强在金融、电子商务等领域非常有用,可以帮助解决数据不平衡问题或在小数据集上提高模型性能。目标:生成与原始数据分布相似但多样化的新样本,同时保持字段间的合理关系。通过将标签作为条件输入,可以控制生成特定类别的样本,解决类别不平衡问题。机器学习效用:使用原始数据、增强数据分别训练模型,比较性能。统计相似性:比较原始数据和生成数据的统计特性。多样性指标:计算生成样本之间的平均距离。医疗诊断中的罕见病例数据增强。客户流失预测中的小类别增强。

2025-05-03 20:51:33 470

原创 生成式算法形成文档摘要案例设计及实现步骤

Encoder-Decoder 架构:使用 Transformer 的编码器处理输入文档,解码器生成摘要。使用自动评估指标和人工评估相结合的方式评估摘要质量,并根据评估结果优化模型。预训练语言模型:如 BERT、T5、GPT 等,通过微调适应摘要任务。摘要类型多样化:支持不同类型的摘要(信息性摘要、结构性摘要等)将训练好的模型部署为可用的服务,并集成到实际应用中。准备训练数据:将文档和对应的摘要转换为模型输入格式。文档格式转换:将不同格式的文档转换为纯文本。标记化:将文本转换为模型可处理的标记序列。

2025-05-03 20:21:16 472

原创 使用生成式算法进行实际项目的案例集锦

开发自然语言搜索功能,为旅客提供 AI 驱动的会话体验,类似于与专业旅行代理人互动,简化旅行预定流程,提升客户体验,加强品牌形象。与广告代理商 Tombras 合作,基于 Gemini 创造 “世界上最智能的广告牌”,在纽约市适应每个社区的广告活动,实时根据数据进行更改,29 小时覆盖 299 个社区,创造了超过 6000 个独特的标题。开发 AI 驱动的助手,帮助寻求庇护者和移民简化法律流程,用户上传法律信函或文件的图片,可提取有价值的信息并获得个性化指导和下一步建议。

2025-05-03 19:53:53 559

原创 生成式算法学习和实战的优质网站

用户可以直接使用平台上的预训练模型进行文本生成、图像生成等任务,也可以对模型进行微调以适应特定的应用场景,同时还有相关的文档和社区支持,帮助用户快速上手。虽然部分模型的使用需要一定的权限和付费,但平台提供了丰富的文档和示例,帮助开发者了解生成式语言模型的原理和应用,对于学习生成式算法在自然语言处理方面的应用有很大的帮助。:提供丰富的 AI 和机器学习课程,包括生成式 AI 的理论与实践内容,有适合初学者的入门课程,也有针对进阶学习者的深入讲解,课程形式多样,包含视频教程、代码示例、项目实践等。

2025-05-03 19:47:20 350

原创 Python在金融领域的案例研究中的应用(附Python代码)

工具:scikit-learn(传统 ML)、TensorFlow(深度学习)、XGBoost(集成学习)工具:pandas(数据处理)、yfinance(行情获取)、requests(API 调用)工具:backtrader(回测框架)、TA-Lib(技术指标)、zipline(实盘交易)工具:Numba(高性能计算)、asyncio(异步 IO)、KDB+(时序数据库)工具:scipy(数值计算)、cvxpy(优化)、pyfolio(绩效分析)应用:反洗钱(AML)、交易监控、合规报告自动化。

2025-05-02 21:57:55 751

原创 Python在案例研究中的作用及应用

网络爬虫:通过requests和BeautifulSoup库快速抓取网页数据,为案例研究收集一手资料。Python 凭借其独特优势,在案例研究中发挥着关键作用,是数据驱动分析与洞察的核心工具。与 R 语言协同:通过rpy2调用 R 包(如ggplot2绘图),整合两种语言优势。数据清洗:利用pandas高效处理缺失值、异常值,统一数据格式,确保案例数据质量。定时任务:结合schedule库实现数据定期更新,保持案例分析的时效性。示例场景:分析电商销售数据时,自动清洗订单记录中的无效条目。

2025-05-01 21:41:50 360

原创 基于规则的文本生成算法的应用场景

在基于规则的机器翻译系统中,通过定义源语言和目标语言之间的语法和词汇对应规则,将源语言文本翻译成目标语言文本。用于实现聊天机器人的部分功能,特别是对于一些常见问题的回答。可以根据用户输入的关键词和语法结构,按照预先定义的规则生成相应的回答。在一些需要生成固定格式文本的场景中,如商务信函、法律文件、报告模板等,基于规则的算法可以根据预设的模板和规则,填充相应的内容,生成符合特定格式要求的文本。通过制定规则来提取文本中的关键信息,如根据句子的位置、关键词的出现频率等规则,选择重要的句子或短语,生成文本的摘要。

2025-05-01 21:35:11 493

原创 文本生成算法总结及Python代码示例

复杂语义生成:推荐使用预训练 Transformer 模型(如 GPT、BERT 变体)。简单任务或特定领域:优先使用基于规则或 n-gram 的方法。应用场景:对话系统、摘要生成等需要优化特定指标的任务。原理:基于 n-gram 统计概率生成文本。优点:捕捉长距离依赖能力强,训练效率高。缺点:难以捕捉长距离依赖,训练不稳定。原理:基于自注意力机制,并行处理序列。原理:通过奖励机制优化生成文本的质量。缺点:长文本连贯性差,无法捕捉语义。优点:能处理变长序列,捕捉短期依赖。缺点:灵活性差,难以处理复杂场景。

2025-05-01 21:32:01 713

原创 生成式算法基础:生成对抗网络(GAN)的原理和应用

这个对抗过程类似于一场博弈,直到达到一个平衡状态,此时生成器生成的样本能够以较高的概率骗过判别器,而判别器也无法准确地区分真实数据和生成数据。高质量图像生成:可以生成逼真的自然图像,如风景、人物、动物等。医学图像合成:生成虚拟的医学图像,用于扩充医学图像数据集,帮助解决医学图像数据稀缺的问题,从而提高医学图像分析模型的性能。艺术创作:艺术家可以利用 GAN 生成新的艺术作品,如绘画、雕塑等,为艺术创作提供新的灵感和思路。语音风格转换:改变语音的风格,如将一种口音转换为另一种口音,或模仿特定人物的语音风格。

2025-05-01 21:26:37 257

原创 Python生成式算法实战(2):数据增强

以下是一个使用生成式算法:生成对抗网络(GAN)对 MNIST 手写数字数据集进行增强的例子。

2025-05-01 20:41:17 193

原创 生成式算法的社区和论坛

会分享生成式 AI 领域的最新开源项目、技术解析等内容,如关于大型语言扩散模型(LLDM)的详解,以及如何将扩散模型思想应用于 LLMs 领域等,也有一些关于生成式算法在实际应用中的问题讨论和经验分享。:有专门的 AI 人工智能算法板块,涉及海思 SD3403 边缘计算 AI 框架等内容,也会有关于生成式算法在一些具体场景,如智能图像水位识别中的应用讨论,还会有网友分享使用 DeepSeek 等模型的经验和问题。:全球知名的数据科学竞赛平台,有很多与生成式算法相关的竞赛题目和讨论。

2025-05-01 20:38:20 295

原创 生成式算法的学习资源推荐

大语言模型应用指南:以 ChatGPT 为起点,从入门到精通的 AI 实践教程》:以通俗易懂的方式解释复杂概念,通过实例和案例讲解大语言模型的工作原理和工作流程、基本使用方法等,还介绍了 GPTs 的创建、多模态模型的应用等前沿内容,适合学术研究者、工程师以及对大语言模型感兴趣的普通读者。《深度学习》:深度学习领域的奠基性经典畅销书,囊括了数学及相关概念的背景知识,包括线性代数、概率论、信息论等,也包含大量与生成式模型相关的基础理论和算法,适合各类读者,能帮助读者建立扎实的理论基础。

2025-05-01 20:35:54 360

原创 提高生成式文档摘要的质量的方法

当前,结合大型预训练模型、强化学习和领域知识的方法已成为主流趋势,同时关注事实性、连贯性和用户需求是关键。大型语言模型:如 GPT-4、Claude 等,通过提示工程(Prompt Engineering)直接生成高质量摘要。Transformer 变体:使用 BART、T5、PEGASUS 等预训练模型,它们在摘要任务上表现优异。领域预训练:在特定领域(如法律、医疗)的大量文本上继续预训练通用模型。远程监督:利用现有摘要(如新闻标题、论文摘要)自动生成训练对。

2025-04-30 22:24:34 1180

原创 生成式文档摘要的质量的评估方法

评估生成式摘要的质量需综合考虑多个维度,并结合自动指标与人工评估,以确保摘要既准确又实用。原理:使用预训练语言模型(如 BERT)计算生成摘要与参考摘要的语义相似度。FactCC:专注于评估摘要的事实一致性,通过对比摘要与原文的蕴含关系。长文本摘要评估:长文档的摘要评估更复杂,需考虑结构和主题的完整性。ROUGE-N:评估摘要与参考摘要之间的 N-gram 重叠率。方法:训练专门的评估模型,预测摘要质量或与参考摘要的相似度。问题回答:通过回答关于原文的问题,检验摘要的信息保留程度。

2025-04-30 22:19:53 1137

原创 生成式文档摘要的应用场景

生成式文档摘要在自然语言处理领域应用广泛,它能够自动提炼文本核心内容,帮助用户快速获取关键信息。会议摘要生成:自动总结学术会议中的演讲内容,为未能参会的人员提供参考。法律文书摘要:自动提炼合同、判决书等法律文档的要点,减轻律师工作负担。内容推荐系统:为个性化推荐引擎提供文本摘要,增强推荐内容的可读性。知识库维护:自动更新知识库中的内容摘要,保持信息的时效性和简洁性。政策文件解读:将冗长的政策文件转化为通俗易懂的摘要,便于公众理解。翻译辅助:先对长文本进行摘要,再进行翻译,减少翻译工作量。

2025-04-30 22:14:40 673

原创 生成式算法实战(1):使用 Python 实现生成式文档摘要

文献综述:研究人员在进行文献调研时,面对大量的学术论文,生成式文档摘要可以帮助他们快速获取每篇论文的关键信息,如研究目的、方法、主要结果和结论等,从而提高文献综述的效率,更快地把握研究领域的现状和发展趋势。新闻聚合:对于新闻聚合平台,生成式文档摘要可以将来自不同来源的关于同一事件的新闻进行整合和摘要生成,帮助用户全面、快速地了解事件的全貌,而无需阅读多篇冗长的新闻报道。论文筛选:在学术数据库中,生成式文档摘要可以作为论文的简要介绍,帮助研究人员快速筛选出与自己研究方向相关的论文,避免在无关论文上浪费时间。

2025-04-30 10:25:59 482

原创 一月速成生成式算法学习计划

分析 GAN 的经典架构:DCGAN(深度卷积生成对抗网络)、WGAN( Wasserstein GAN),学习卷积神经网络在 GAN 中的应用,以及 WGAN 如何改进传统 GAN 的训练不稳定问题。Pandas 用于数据处理和分析,学习 DataFrame 的使用,包括数据读取、清洗、筛选等。深度学习框架选择与入门:推荐选择 PyTorch 或 TensorFlow,学习框架的基本概念,如张量(Tensor)、自动求导(Autograd)、计算图等,完成简单的张量运算和模型定义示例。

2025-04-30 10:11:00 481

原创 Python基础:文本生成常用的生成式算法

长短期记忆网络(LSTM)和门控循环单元(GRU)是 RNN 的两种常见变体,它们通过引入门控机制来更好地处理长序列中的信息,解决了 RNN 中的梯度消失和长期依赖问题。原理:VAE 是一种生成式模型,它将文本表示为潜在空间中的向量,通过对潜在空间的采样和重构来生成新的文本。应用:在文本生成领域,GAN 也有一定的应用,例如在对话生成中,通过对抗训练可以使生成的对话更加自然和流畅。例如,在语言模型中,给定一个单词序列,LSTM 或 GRU 可以预测下一个单词的概率分布,从而生成连贯的文本。

2025-04-29 08:01:56 389

原创 Python基础:什么是生成式算法

VAEs 生成的样本通常具有一定的连续性和多样性,在图像、语音等多种数据生成任务中都有应用。例如,在语音生成中,VAEs 可以学习到语音的潜在表示,进而生成新的语音信号。生成器负责生成新的数据样本,判别器则负责区分生成的样本和真实的样本。例如,在图像生成领域,GANs 可以学习到真实图像的分布,从而生成新的、具有类似特征的图像,如生成逼真的人脸图像、风景图像等。:通过一系列可逆的变换来建立数据的概率分布模型。例如,RealNVP 模型就是一种基于流的生成模型,在图像生成和密度估计等方面有较好的表现。

2025-04-29 07:59:35 273

原创 Python不同类型数据结构:特点及应用场景

Python 具备多种不同的数据结构,像列表(List)、元组(Tuple)、字典(Dictionary)和集合(Set)等,每种数据结构都有其独特的设计,以满足多样化的编程需求。当你需要存储一组不重复的数据,并且可能需要进行交集、并集、差集等集合运算时,集合就派上用场了。当其他开发者阅读你的代码时,能够更容易理解数据的含义和处理方式。列表(List):它是一种有序且可变的数据结构,能够存储任意类型的元素,并且允许元素重复。比如存储学生的信息,每个学生有唯一的学号作为键,对应着学生的姓名、年龄等详细信息。

2025-04-22 07:49:41 295

爬取新闻数据并进行主题模型分析python代码及解释

爬取新闻数据并进行主题模型分析python代码及解释

2025-02-20

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除