神经网络中的三大概念:反向传播、梯度下降、损失函数,这三个概念
反向传播的英文是Backpropagation,简称BP,一般在神经网络中会和随机梯度下降法(stochastic gradient decent),简称SGD一起使用,作为神经网络中参数调整的手段
反向传播求解w
求w的具体变化值
梯度下降
SGD就是随机生成参数的意思,梯度下降 = 梯度+下降。梯度就是表示某一函数在该点处的方向导数沿着该方向取得最大值(以前学过的概念:导数、偏导),下降就更好理解了,往负方向走。因为梯度的方向是函数上升最快的方向,但是我们要让误差公式尽可能的小,就要往函数下降最快的方向移动(在上升最快的方向上把符号改成负号即可)。所以随机梯度下降的意思就是:最开始随机生成神经网络参数,然后随着函数梯度下降最快的方向进行网络参数的调整。
-
(θ-θ₀)=ŋν(其中 ŋ是标量,ν是单位向量 ,θ-θ₀不能太大,否则线性近似就不够准确)
-
f(θ)-f(θ₀) ≈ (θ-θ₀)•▽f(θ₀) = ŋν•▽f(θ₀) < 0