神经网络基础知识

本文介绍了神经网络的基础知识,包括反向传播、梯度下降及其与随机梯度下降(SGD)的关系。反向传播用于调整网络参数,梯度下降则沿函数下降最快方向更新参数。重点强调了梯度下降法在神经网络学习中的重要性,特别是链式求导法则的应用。
摘要由CSDN通过智能技术生成

 神经网络中的三大概念:反向传播、梯度下降、损失函数,这三个概念 

反向传播的英文是Backpropagation,简称BP,一般在神经网络中会和随机梯度下降法(stochastic gradient decent),简称SGD一起使用,作为神经网络中参数调整的手段

反向传播求解w

 求w的具体变化值

梯度下降

SGD就是随机生成参数的意思,梯度下降 = 梯度+下降。梯度就是表示某一函数在该点处的方向导数沿着该方向取得最大值(以前学过的概念:导数、偏导),下降就更好理解了,往负方向走。因为梯度的方向是函数上升最快的方向,但是我们要让误差公式尽可能的小,就要往函数下降最快的方向移动(在上升最快的方向上把符号改成负号即可)。所以随机梯度下降的意思就是:最开始随机生成神经网络参数,然后随着函数梯度下降最快的方向进行网络参数的调整。

  1. (θ-θ₀)=ŋν(其中 ŋ是标量,ν是单位向量 ,θ-θ₀不能太大,否则线性近似就不够准确)

  2. f(θ)-f(θ₀) ≈ (θ-θ₀)•▽f(θ₀) = ŋν•▽f(θ₀) < 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值