- 博客(22)
- 收藏
- 关注
原创 欢迎使用Markdown编辑器
这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注脚注释也是必不可少的KaTeX数学公式新的甘特图功能,丰富你的文章UML 图表FLowchart流程图导出与导入导出导入欢迎使用Markdown编辑器你好! 这是你第一次使用 Markdown编辑器 所展示的欢迎页。如果你想学习如何使用Mar
2022-04-14 11:46:53 561
原创 【无标题】
class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None): super(Bottleneck, self).__init__() self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.bn1 =
2022-03-29 21:44:25 172
原创 yolov5怎么学
学习yolov5过程中发现的宝藏文章视频GitHub YOLOv5 开源代码项目系列讲解 你一定从未看过如此通俗易懂的YOLO系列(从v1到v5)模型解读 Yolov5 系列1— Yolo发展史以及Yolov5模型详解目标检测 YOLOv5 开源代码项目调试与讲解实战【土堆 x 布尔艺数】...
2022-03-25 21:34:41 3624
原创 yolov5获取边框坐标
这里使用的是5.0版本打开detect.py,找到# Write results模块,找到 save_one_boxctr+鼠标点击,进入general.py,会自动定位到 save_one_box函数,在图片位置加一行print,输出目标边框坐标print("左上点坐标:("+str(int(xyxy[0,0]))+","+str(int(xyxy[0,1]))+"),右下点坐标:("+str(int(xyxy[0,2]))+","+str(int(xyxy[0,3]))+")")还需要在配
2022-03-25 16:36:48 7289 4
原创 yolov5的train文件代码含义解析(部分)
def parse_opt(known=False):parser = argparse.ArgumentParser()parser.add_argument(’–weights’, type=str, default=ROOT / ‘yolov5s.pt’, help=‘initial weights path’)#指定一个训练好的模型的路径,初始化我们网络模型参数。从头开始训练default=’ '为空;parser.add_argument(’–cfg’, type=str, default
2022-03-23 14:53:02 8178
原创 训练YOLOv5模型
训练YOLOv5模型过程记录1、运行train.py报错pytorch gpu出错问题:RuntimeError: CUDA out of memory.报错原因:GPU的显存不足,不能容纳1batch的数据量解决方法:batch-size改小点epochs改小点使训练快点结束batch-size:多少数据打包成一个batchepochs:训练多少轮(注:我的目的是让代码跑起来所以缩短训练时间)训练成功的亚子...
2022-03-21 13:38:00 1204
原创 yolov5 detect文件参数解释(部分)
detect.py中参数解释default默认值def parse_opt():parser = argparse.ArgumentParser()parser.add_argument(’–weights’, nargs=’+’, type=str, default=ROOT / ‘yolov5s.pt’, help=‘model path(s)’)parser.add_argument(’–source’, type=str, default=ROOT / ‘data/images’, hel
2022-03-10 16:55:24 10213
原创 目标检测 YOLOv5 开源代码项目调试过程记录
YOLOv5官方项目地址:https://github.com/ultralytics/yolov51、选择较新的tags文件我选择了6.0,因为之前的版本由于更新(丢包)原因会导致运行失败2、在pycharm中配置对应的conda环境Win10 anaconda创建pytorch1.7.0gpu参考视频3、在pycharm的terminal中输入pip install -r requirements.txt指令进行安装参考视频...
2022-03-10 11:18:27 1825
原创 Win10 anaconda创建pytorch1.7.0gpu
使用anaconda创建pytorch1.7.0(gpu)环境注:需要已经安装好合适版本的cuda、cudnn、python和anacondaanaconda前置教程1、在anaconda创建虚拟环境conda create -n pytorch pytorch=3.62、激活环境conda activate pytorch3、在pytorch环境下输入安装语句在pytorch官网找到对应版本的安装语句windows10 更新NVIDIA 显卡驱动注:本教程缺少cuda和cudnn的
2022-03-09 19:57:16 423
原创 深度学习入门—tensorflow2—2.3激活函数
激活函数SigmoidSigmoidTanhReluLeaky ReluSigmoidSigmoidTanhReluLeaky Relu参考内容: 激活函数.
2021-10-21 16:28:56 197
原创 深度学习入门—tensorflow2—2.2复杂度学习率
神经网络复杂度&学习率神经网络复杂度空间复杂度:时间复杂度:学习率神经网络复杂度空间复杂度:层数=隐藏层的层数+1个输出层上图为2层NN总参数=总w+总b上图 3x4+4 + 4x2+2 = 26 (第1层) (第2层)时间复
2021-10-21 16:07:36 151
原创 深度学习入门—tensorflow2—2.1预备知识
预备知识tf.wherenp.random.RandomState.randnp.vstacknp.mgrid[] .ravel() np.c_[]np.mgrid 用法tf.wheretf.where(条件语句,真返回A,假返回B)import tensorflow as tfa = tf.constant([1, 2, 3, 1, 1])b = tf.constant([0
2021-10-12 21:03:09 220
原创 深度学习入门之鸢尾花数据集读入
深度学习入门之鸢尾花数据集读入建立文件下载鸢尾花数据集当报错说没有sklearn、pandas包时:建立文件建立.py文件下载鸢尾花数据集在TF2.1环境下下载鸢尾花数据集from sklearn import datasetsfrom pandas import DataFrameimport pandas as pdx_data = datasets.load_iris().data # .data返回iris数据集所有输入特征y_data = datasets.load_iri
2021-10-11 18:54:11 1030
原创 深度学习入门之鸢尾花anaconda下tensorflow2.1环境安装
TF2.1安装深度学习入门之鸢尾花tensorflow2.1环境安装1创建名为TF2.1的环境,python3.7版本2进入TF2.1环境3安装cudatoolkit10.1版本(英伟达的SDK10.1版本)4安装cudnn7.6版本5安装tensorflow2.1深度学习入门之鸢尾花tensorflow2.1环境安装配置anaconda 、tensorflow2.1环境1创建名为TF2.1的环境,python3.7版本conda create -n TF2.1 python=3.7选择y创建p
2021-10-08 19:16:03 534
原创 Anaconda怎么用
Anaconda怎么用一、进入Anaconda配置界面二、管理运行环境、配置虚拟环境(1)创建环境(2)进入环境彩蛋(3)离开环境(4)删除环境三、Anaconda包管理四、升级Anaconda五、卸载Anaconda一、进入Anaconda配置界面点击开始菜单,在左侧列表中打开Anaconda3文件夹,右键点击Anaconda Prompt(Anaconda3),选择更多,选择管理员身份运行。二、管理运行环境、配置虚拟环境(1)创建环境创建具有特定 Python 版本的环境,例如创建环境名
2021-08-19 15:02:48 10715
原创 nvidia怎么查看
gpu环境配置第一步查看nvidia显卡驱动程序版本号查看nvidia显卡驱动程序版本号在电脑桌面空白处点击鼠标右键。点击其中的【nvidia控制面板】选项点击下面的系统信息获得驱动程序版本
2021-08-16 19:52:38 2178
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人