自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(148)
  • 收藏
  • 关注

原创 2020-11-26

知识指经过证实或证伪的信息,经过处理和解读,可以呈现出不同的意义,也可能表现为智慧和领导力。知识通常具有本地性、具体性和实践性,是一个经济体内的价值源泉。物质是守恒的,而相比之下,知识可以无限地扩展和积累。所有的经济交易都是由交易者差异化的知识的交易构成的。...

2020-11-26 13:21:32

原创 2020-11-26

熵最简单的衡量尺度是二进制比特。如同物理熵一样,信息熵是一个事件发生概率的对数的负值,这里的对数是以2为底的对数。秩序是可以预测的,因此,一个有序的系统是低信息量、低熵的系统。...

2020-11-26 13:07:12

原创 2020-11-26

凡是努力寻求保障、寻求确定性的人,总是生活在过去的时代里,因为只有过去才是稳定可靠的,而他们的策略虽然用了所谓“进步”的字眼来装点,肯定也是逆时代潮流而动的。如果不去积极探索,而是寄希望于某些固有的知识,那么等我们得到它们的时候,恐怕已经错失了很多机遇。如果一位风险投资家只是坐等稳赚不赔的市场,如果一位政客只有在出现新的财政收入来源之后才肯减税,如果一个领导者想方设法平息公众舆论,那么他们的行动必然是怯懦的,必然会错失大好机遇。未来只属于那些不断创造、不断进行高熵投资的企业家们。...

2020-11-26 12:59:36 2

原创 2020-11-22

不要一味地解决问题,因为当你专注于解决问题时,你在助长过去的失败,消耗你的力量,最终,虽然名义上纠正了错误,取得了进步,但错误的影响得到了延续,导致你不仅趋于平庸,还会付出沉重的代价。银行家应该遵循的忠告是:不断地寻找并抓住机遇。...

2020-11-22 10:24:27 5

原创 2020-11-16

信息就是熵。它是混乱的,是秩序的变形,是均衡的扭曲。它是非决定性的,充满惊异的。熵则是选择的自由。这个观点是现代信息论的核心!

2020-11-16 09:49:26 3

原创 2020-11-16

根据热力学第二定律,虽然宇宙最初为我们展示了一个良好的模式,但地球上的低熵载体将趋于恶化。就经济环境而言,虽然市场经济最初可能拥有一个良好的政治环境,可以进行良性的运作,但这个政治环境会越来越混乱,即熵值越来越高,越来越不具有可预测性。政治家和监管者通过高熵的干预手段为其亲信谋取利益。律师利用法律为律师界争取优势。在任的议员们会利用职权去惩罚那些为其对手提供资助的人。税率逐渐攀升,学习曲线的价值逐渐弱化,企业家的创业环境遭到了破坏。到最后,满怀嫉妒和愤怒的暴徒开始攻击成功的种族或宗教团体,如犹太人、摩门教徒

2020-11-16 08:29:29 137

原创 2020-11-09

乔治•吉尔德对经济社会的洞察无人能出其右,从看到他的《后谷歌时代》,到《知识与权力》,再到《财富与贫困》,被他的洞察力深深震撼,在中国,他的名声远远没有凯文•凯利(KK)大,但他对我思想的影响远远超过KK,他的远见和对经济的洞察,成为我行进路上的明灯,也是因为乔治,重新焕发我持续奋斗、著书立说的激情!...

2020-11-09 20:26:26 7

原创 2020-11-07

论AI量化在金融交易中的作用影响我们行为的一种力量(情绪、相对论、社会规范等),这些力量对我们的行为施加了巨大的影响,但我们的自然本性使自己大大低估了这种力量。它们能够起作用,不是因为我们缺乏知识,缺少实践,或者我们天生低能。相反,一再受到影响的不仅是新手,还有资深的专家,影响造成的失误也是我们人生的一部分。用视觉幻象同样可以说明这一点。就像我们不可避免地被视觉幻象所愚弄一样,我们也陷入了自己大脑带入的“决策幻象”之中。问题在于我们的知觉和决策环境是通过眼、耳、味觉和触觉,还有主宰一切思想的大脑,经过过

2020-11-07 21:29:44 40

原创 2020-11-07

技术改变世界阅读塑造人生投资成就梦想专业创造价值

2020-11-07 20:58:07 8

原创 2020-11-02

智能投顾=算法模式识别+算法推荐

2020-11-02 13:34:18 60

原创 2020-10-31

最近邻适用于小型数据集,是很好的基准模型,很容易解释。线性模型非常可靠的首选算法,适用于非常大的数据集,也适用于高维数据。朴素贝叶斯只适用于分类问题。比线性模型速度还快,适用于非常大的数据集和高维数据。精度通常要低于线性模型。决策树速度很快,不需要数据缩放,可以可视化,很容易解释。随机森林几乎总是比单棵决策树的表现要好,鲁棒性很好,非常强大。不需要数据缩放。不适用于高维稀疏数据。梯度提升决策树精度通常比随机森林略高。与随机森林相比,训练速度更慢,但预测速度更快,需要的内存也更少。比随机

2020-10-31 01:37:51 8

原创 2020-10-30

作为投资者现在要通过AⅠ来提升投资能力,以前没有计算机编程素养的人python编程和机器学习都是从头学习。阿尔法择时策略人工智能比人厉害!去年国务院推出“智能+”,今年疫情让许多行业提前三五年推进到在线商业,进入到智能时代。而我们作为投资者最容易落地的应用场景就是二级市场股票投资,包括数字货币。这个时代才刚刚开始,一切大有可为!可以说未来三十年都是在今年奠定的大框架下细化的过程,我个人完美错过互联网的二十年,现在是拼尽全力也要拿到智能时代的门票,今年真的很羡慕你们懂编程的,感觉你们已经拿到了通向智能时代的

2020-10-30 22:43:45 21

原创 2020-10-29

过拟合是指一个模型拟合了部分噪声,而不是真正数据。对我们而言,一个模型的好坏取决于它能否准确预测未来的未知数据。交叉验证的核心思想,就是在模型拟合的过程中并不使用全部的历史数据,而是保留一部分数据,用来模拟未来的数据,对模型进行检验。当一个模型过于简单,以致连训练数据都拟合得不够好时,称之为欠拟合(underfitting)。模型对于任何它没见过的数据都没有泛化能力——这最终导致它过拟合。...

2020-10-29 01:30:06 5

原创 2020-10-28

我期待着Dfinity主网上线后,我能用不超过1024行的代码就能部署一个开发应用,实现精益创业!利用算法驱动金融交易! ​​​

2020-10-28 02:08:51 3

原创 2020-10-27

字节核心能力有三:一,高效的推荐算法做人和信息匹配;二,高效的UG(User Growth,用户增长);三,高效的商业化。高效的UG引入用户,用高效的推荐技术去匹配,留存做好后商业化也高效,挣到钱又去投UG。...

2020-10-27 00:46:22 3

原创 2020-10-25

20年前在MBA课堂上把当时最厉害的企业家和公司分析了个遍,杰克•韦尔奇、张瑞敏、牛根生、柳传志……对他们的创业历程如数家珍。20年后在金融圈混迹多年,对身边发生的巨变浑然不觉,错过了中国互联网二十年。没有研究过腾讯,没调查过阿里,没读过谷歌、没有分析过脸书,甚至是连新生代的字节跳动都无视其波澜壮阔的成长……2020年一场疫情,让百年不遇之大变局提前呈现,蓦然发现这个世界早已变了,再也回不去20年前那个熟悉的工业世界,现在正大踏步迈向智能时代,进入了算法驱动的智能世界。这个是在信息时代高度发达的基础上进化

2020-10-25 10:38:00 72

原创 2020-10-15

客户和公司互相教育,共同探索什么是可能的。 好的产品和服务相辅相成。现有可能性催生客户的欲望,可能性又由追随客户新的欲望的公司创造。由于网络中的创造是一种联合创造,是一个产消行为,因此在合作创造者之间必然存在多方面的关系。 在工业社会,信息的平衡不可避免地向公司一方倾斜。它们握有高度集中的知识,而客户们只拥有自己的个人体验,最多加上几个朋友的经验。但是网络经济改变了这一格局。复杂性与技术的每一次进步都使得经济行为的重心更靠向个人一端。 网络技术的目的是让客户更聪明。...

2020-10-15 18:19:46 4

原创 2020-10-15

现在谈跨界、转型,其实都是过去人类自己设置的牢笼,知识的大树枝繁叶茂,许多人终其一生只能爬上一枝,称为专家。如果能遍历知识树,学到多元思维模型,则是大家。工业时代的专业化分工理论曾经在提高社会协作效率上居功至伟,但到了智能时代,这种思维模式对人们的发展造成了巨大的戕害,让人们无法适应新的环境,在代际竞争中被残酷地扫岀市场。...

2020-10-15 00:32:46 13 1

原创 2020-10-13

专业化的问题是它只能让你成为专家,切断你与世界上其他任何东西的联系,不仅如此,还切断你与自身其他潜能的联系。从工商管理MBA到金融投资,再到人工智能AⅠ,未来也许涉猎基因工程和医学,这种经历也许很有趣 ​​​。...

2020-10-13 14:47:17 4

原创 2020-10-09

要想做到不盲信数据,不被偏见蒙蔽,就必须深究“那句话是真的吗”“那个数据的解读方法正确吗”。我把这种深究能力称为“解读能力”。如果拥有很强的解读能力,就能够顺利地读取数据。所谓解读能力,简单说就是恰当地读取、分析及表达的能力。把输入、思考和输出三种能力加起来才能称得上具有解读能力,一个都不能少。...

2020-10-09 15:33:27 5

原创 2020-10-09

一种假说被大家广泛接受必须具备三个条件:它的理论体系必须是自洽的,即它必须自圆其说,不自相矛盾的。它必须对已有的发现能够准确地描述,即这种假说能自圆其说,并且是符合现有的科学实践的。根据这种假说能够得出一些推论和预言,而这些预言能够被将来的实验和观测所验证。当越来越多的推论和预言得到验证时,这一科学假说就得到科学家的广泛接受,而这一科学假说也就被称为科学理论了。这说明科学理论依然不是100%被证实,只能有一定条件下被证实,不是什么宇宙至理!在这个前提下,计算机科学尤其是人工智能的发展就很容易理解。工业时代

2020-10-09 11:48:54 10

原创 2020-10-01

❇当你开始一个新项目,尤其是在一个你不擅长领域时,很难正确猜测出最有前景的方向。❇所以,不要在一开始就试图设计和构建一个完美的系统。相反,应尽可能快(可能在短短几天内)地构建和训练一个基本系统。然后使用误差分析去帮助你识别出最有前景的方向,并据此不断迭代改进你的算法。...

2020-10-01 22:13:16 6

原创 2020-09-30

从2017年到2020年,AI领域创业风起云涌,在线化程度高的落地应用场景率先起跑,譬如智能投顾、量化交易,互联网金融。

2020-09-30 14:57:01 8

原创 2020-09-30

根据高盛公司的评估,金融行业里,最有可能应用人工智能技术的领域主要包括:·量化交易与智能投顾:一方面,人工智能技术可以对金融行业里的各项投资业务,包括股权投资、债券投资、期货投资、外汇投资、贵金属投资等,利用量化算法进行建模,并直接利用自动化算法参与实际交易,获取最高回报。另一方面,人工智能算法也可以为银行、保险公司、证券公司以及它们的客户提供投资策略方面的自动化建议,引导他们合理配置资产,最大限度规避金融市场风险,最大限度提高金融资本的收益率。·风险防控:银行、保险等金融机构对于业务开展中存在的信用风

2020-09-30 00:34:51 15

原创 2020-09-30

拿股票买卖来说,人类股票分析师的大脑里最多能够记住几百只股票的交易规律、价格走势,最多能根据股票市场内的几千个影响股价的因素,制定出简化的交易策略。而基于机器学习特别是深度学习实现的量化交易程序,则可以轻松应对几万、几十万个变化因子,全面观察交易场内、场外的各种影响因素,在需要时,可以盯紧全世界每一只股票的交易价格,每一次交易的实时情况,每一个交易市场的整体波动规律,每一个投资人和投资机构在全部历史时间内的交易策略,乃至世界所有证券、财经类媒体上每一篇关乎股票价格的报道,Facebook和推特上每一次关乎股

2020-09-30 00:28:32 7

原创 2020-09-29

太阳黑子是太阳表面因温度相对较低而显得“黑”的局部区域,当黑子群数量增多时,就预示着太阳上将有剧烈的变化。太阳活动高峰年指的是太阳黑子活动得最频繁的一年,约每11年为一个周期。科学界对太阳活动周的编号大概是从18世纪开始的,目前已经进入第25个周期。上一次的太阳活动极大期是在2014年4月,而极小期就是2019年12月。9月16日,NOAA(美国国家海洋和大气管理局)和NASA的科学家宣布,第25个太阳周期已确认起始于2019年12月,此后太阳活动将开始慢慢加剧,预计在2025年7月达到高峰。主宰地球(经

2020-09-29 16:34:14 4

原创 2020-09-29

深度学习和所有机器学习方法一样,是一种用数学模型对真实世界中的特定问题进行建模,以解决该领域内相似问题的过程。

2020-09-29 01:56:04 3

原创 2020-09-28

非理性+有限理性这才是人的常态也是先驱智能投顾的理论体系的假设和前提 ​​​

2020-09-28 23:55:02 94

原创 2020-09-28

量子态坍塌现象——量子以波的形式存在时才能被发现,但是当观察者观察时,量子必定存在于一个确定的位置,于是原来的量子波坍缩为一点,此时量子表现出粒子性,人也就无法继续观察——技术与幸福的关系也是如此,当你看见了幸福的同时,背后就有些事物在发生坍塌。...

2020-09-28 21:17:44 10

原创 2020-09-27

大数据科技与认知科学和人工智能的结合使行为主义很可能变为明日黄花。预测性和引导性数据分析可以通过个人化的识别、分析和干预‘植入’意向和行为动机,从而改变法律的作用场域。

2020-09-27 15:00:12 17

原创 2020-09-27

ERP曾经被视为企业信息系统的核心,如今也已看见衰落的景象。尽管ERP的模板开发相当于对大量企业的数据进行了人工的深度学习,找出基本模式,还可以针对每个用户的特点进行二次开发。但本质上仍然是一种集中开发的模式,弹性不足,部署周期长,和业务有脱节,这是造成“谁都不太懂”的根源。ERP跟不上近年商业环境的变化,逐渐被云计算所替代。云计算不只是一种技术,同时也代表一种理念。对应着云(分布式)计算,企业也要从传统的集中管理转变为分布式管理。...

2020-09-27 12:26:42 7

原创 2020-09-27

深度学习的最核心理念是通过增加神经网络的层数来提升效率,将复杂的输入数据逐层抽象和简化。也就是说,将复杂的问题分段解决,每一层神经网络就解决每一层的问题,这一层的结果交给下一层去进行进一步处理。...

2020-09-27 10:06:59 3

原创 2020-09-26

Matthew Fisher(马修·菲舍尔)、潘建伟、朱清时等科学家都认为,意识的本质就是量子纠缠。

2020-09-26 22:07:46 2

原创 2020-09-26

在人工智能浪潮初起阶段,持续的应用研究特别是开发可以从数据中获取知识,创造智能体验的ML(机器学习)算法是这个变革飞轮的核心。在这个阶段,所有人工智能企业努力的重要组成部分就是拥有持续的应用研究。...

2020-09-26 19:34:15 9

原创 2020-09-26

“人类进步”的本质——我们为那些能让我们认知更多,实现更多,获得更多经验的事情充满热情地奋斗。而计算能力的不断发展,正是遵循着上述人类进步的方向,成为人类进步的本质表现。尤其是在计算机编程出现后,人类的进步开始前所未有地加速。其核心模式包括以下关键步骤:人类捕捉宇宙中的各种现象,特别是通过有意地观察获得经验;然后通过计算,将信息有效地组织、处理、提炼,使人类对某个现象进行更深入和抽象的理解,形成知识;人类利用产生的知识认知来采取行动,与现象进行交互,最终实现我们预期的结果。以现代数字计算系统为基础,IT(

2020-09-26 15:43:22 11

原创 2020-09-26

今天的人工智能思路与过去不同,变思维规则问题为数据问题和策略问题。过去人类总想为计算机设计出完美的逻辑,不断把人类的种种逻辑规则抽象成函数之后输入计算机里。现在的人工智能主要基于大数据基础和算法的进步。也就是说,今天人工智能的爆发恰恰建立在20世纪90年代末互联网爆发的基础上。有了互联网,数据才会大量产生。注意,这些数据不是用户自觉填写的数据,比如姓名、年龄、住址、爱好等,而是用户在使用互联网时自动产生的数据,比如每一次搜索、每一次点击就是一种数据,每一次移动轨迹也是一种数据。百度大数据实验室一位年轻的科

2020-09-26 14:56:42 97

原创 2020-09-26

蒙特卡洛搜索算法和基于深度学习的模式识别促成了AlphaGo的成就

2020-09-26 11:33:19 5

原创 2020-09-25

公司在增长领域最重要的一个转变是从传统的“一对多”营销思维模式转变为提供完全个性化的“一对一”的用户体验。比如,现在公司可以根据每位用户的喜好发送个性化邮件和产品推荐,即使用户数量达到几百万也能做到这一点。这种大规模的个性化做法核心在于“理解用户,理解你所处的行业,并确保在二者之间建立完美的匹配”。亚马逊是个性化技术的先驱。这个技术之所以成功得益于大规模的客户数据以及更先进的编程技术让公司可以高效地挖掘有关用户个人喜好的海量信息。要实现个性化不仅可以利用用户提供的个人信息或者他们在公司网站或者App上的行

2020-09-25 11:47:29 2

原创 2020-09-24

第一个是捕捉真正的行业机会的能力。一个机会来的时候大家都容易出成果,这是一个时机问题。做商业也是一样,大部分行业的大部分时间是没有机会的,所以第一核心能力是发现行业机会。第二个是发现行业机会之后,根据行业需要的能力,快速学习去建设这个能力。如果非要说什么是核心竞争力,可能快速学习能力是核心竞争力,这才会让你的核心竞争力,不局限在某一个特定的领域,使得你长期不断进步,当需要新的能力的时候,能够抓住新的机会。...

2020-09-24 00:50:39 3

原创 2020-09-15

1.所有策略都有容量2.好的策略价值连城

2020-09-15 12:44:32 5

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除