PyTorch深度学习4--反向传播算法

反向传播算法学习笔记与记录

在看完B站刘二大人反向传播的视频课后,对梯度下降算法和深度学习的理解又增强了,在此再记录一下自己的理解

首先在学习反向传播时,有几个概念需要知道
  1. 反向传播算法只是能得到误差,而迭代求权重的最优值只能通过梯度下降算法

  2. 反向传播算法分为两个步骤,即“正向传播求损失”和“反向传播传回误差”。—即整个学习步骤是 1.计算损失值 2.进行反向传播 3.使用梯度下降算法更新权重

  3. tensor类型是PyTorch的一种数据类型,其包含data和grad两种结构,且这两种结构也是tensor类型,有点像结构体里面的指针一样,需要引用。

  4. “数值之间不仅仅只是计算,更重要的是生成了计算图”,只有理解了计算图才能知道整个反向传播是怎么实现的

通过线性函数来模拟反向传播的过程

假设每学习1小时成绩能提高2分,2小时能提高4分,通过求线性模型来求在学习4小时的时候能提高多少分

假设每学习1小时成绩能提高2分,2小时能提高4分,通过求线性模型来求在学习4小时的时候能提高多少分

1.预测模型为y = w*x的线性模
def forword(x):
    return x * w
2.求损失值loss
'''计算MSE(平均平方误差)'''
def loss(x,y):
    y_pred = forword(x)
    return (y - y_pred)*(y - y_pred)
3.将w设定初始权重为1,且由于需要计算w的梯度所以需要开启w变量的梯度
w = torch.tensor([1.0])  #设定权重w的初值为1,
w.requires_grad = True
4.画出计算图

在这里插入图片描述

5.核心代码部分
for epoch in range(100): #循环100次
    for x,y in zip(x_data,y_data):
        l = loss(x,y)  #生成计算图,且l是一个张量,求loss的正向计算
        l.backward()   #进行反向计算,在调用l.backward()之后,w.grad由之前的none变成tensor
        print('\tgrad:', x,y,w.grad.item())
        w.data = w.data - 0.01*w.grad.data  #由于w.grad是tensor类型,所以在进行递减时,需要对w里面的数据进行计算,而不是grad

        w.grad.data.zero_()#在每次更新之后返回的w误差都需要归零,以免在进行下一次返回时返回的是误差的和

    print('progress', epoch,l.item())

总代码

import torch

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

'''由于要进行反向传播来计算梯度从而进行梯度下降算法求最小权重,所以需要设定数据为tensor
   类型来生成计算图,而tensor类型是pytorch的一种数据类型,是由data 和 grad 两种结构组成
   且data 和 grad 两种结构的类型任然是tensor类型
'''
w = torch.tensor([1.0])  #设定权重w的初值为1,
w.requires_grad = True   #给w变量开启梯度,由于w是需要计算梯度的,所以需要设定tensor中的grad型

def forward(x):
    return x*w;  #w是tensor型,x*w也是tensor型

def loss(x,y):
    y_val = forward(x)
    loss = (y_val -y)**2
    return loss

print('before, w= ', forward(4).item())  #w未收敛之前是1

for epoch in range(100): #循环100次
    for x,y in zip(x_data,y_data):
        l = loss(x,y)  #生成计算图,且l是一个张量
        l.backward()   #进行反向计算,在调用l.backward()之后,w.grad由之前的none变成tensor
        print('\tgrad:', x,y,w.grad.item())
        w.data = w.data - 0.01*w.grad.data  #由于w.grad是tensor类型,所以在进行递减时,需要对w里面的数据进行计算,而不是grad

        w.grad.data.zero_()#在每次更新之后返回的w误差都需要归零,以免在进行下一次返回时返回的是误差的和

    print('progress', epoch,l.item())

print('after, w= ', forward(4).item())  #通过反向传播算法和梯度下降算法的迭代更新之后,w的值变为2

测试结果

训练之前

训练之前,输入学习时长4之后可以看到分数为4,即线性模型中的w(权重)为初始值1。
在这里插入图片描述

训练之后

在这里插入图片描述

可以看到在20轮左右权重w就已经接近最优值

在这里插入图片描述

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
反向传播算法深度学习中的核心算法之一,它是用来计算神经网络中参数的梯度,并根据梯度更新参数,从而实现模型的训练。 在PyTorch中,实现反向传播算法的一般步骤如下: 1. 构建计算图:首先,需要定义神经网络模型,并将输入数据传递给模型进行前向计算,得到模型的输出结果。 2. 计算损失函数:根据模型的输出结果和标签数据,计算损失函数。PyTorch中提供了一些常用的损失函数,如交叉熵损失函数、均方误差损失函数等,可以根据具体情况进行选择。 3. 计算梯度:通过调用损失函数的backward()方法,计算损失函数对每个参数的梯度。在计算梯度之前,需要将梯度清零,以避免之前的梯度对当前梯度的影响。 4. 参数更新:根据梯度信息和优化算法,更新模型的参数。PyTorch中提供了一些常用的优化算法,如随机梯度下降、Adam等。 下面是一个简单的示例代码,实现了一个简单的全连接神经网络,并使用反向传播算法进行训练: ```python import torch import torch.nn as nn import torch.optim as optim # 定义网络模型 class Net(nn.Module): def __init__(self): super(Net, self).__init__() self.fc1 = nn.Linear(10, 5) self.fc2 = nn.Linear(5, 1) def forward(self, x): x = torch.relu(self.fc1(x)) x = self.fc2(x) return x # 定义输入数据和标签数据 inputs = torch.randn(1, 10) labels = torch.randn(1, 1) # 定义损失函数和优化算法 net = Net() criterion = nn.MSELoss() optimizer = optim.SGD(net.parameters(), lr=0.01) # 计算模型输出和损失函数 outputs = net(inputs) loss = criterion(outputs, labels) # 计算梯度并更新参数 optimizer.zero_grad() loss.backward() optimizer.step() ``` 在上面的代码中,首先定义了一个全连接神经网络模型,包含两个线性层。然后,定义了输入数据和标签数据。接着,定义了损失函数和优化算法,并将模型的参数传递给优化器。在每次训练迭代中,计算模型的输出结果和损失函数,然后使用反向传播算法计算梯度,并使用优化算法更新模型的参数。 需要注意的是,PyTorch中的反向传播算法是自动求导的,即不需要手动计算梯度,只需要通过调用backward()方法即可。另外,在每次迭代中,需要将梯度清零,否则会累加之前的梯度,导致结果不正确。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值