StableAnimator

StableAnimator 介绍

 

        StableAnimator 是一个高质量、身份保持(ID-preserving)的人像动画生成框架,采用视频扩散模型(Video Diffusion Model),能够在不使用任何面部修复或换脸后处理的情况下,生成自然、高清且一致的人物动画。

 

📌 研究机构:复旦大学、微软亚洲研究院、Huya Inc、卡内基梅隆大学
📌 论文arXiv 预印版
📌 GitHubStableAnimator Repository
📌 CVPR 2025 录用 🎉

 


 

1. 主要特点

 

身份保持(ID-Preserving)

  • 许多现有模型(如 AnimateAnyone)在动画过程中容易出现 身份漂移(Identity Drift),导致生成结果不像原始人物。
  • StableAnimator 采用全局内容感知的 Face Encoder(面部编码器),确保身份一致性。

高质量视频生成

  • 无需使用 FaceFusionGFP-GANCodeFormer 等后处理工具,就能生成高清动画。
  • 采用 Hamilton-Jacobi-Bellman (HJB) 方程优化 进行去噪,使面部细节更清晰。

端到端(End-to-End)训练

  • 直接输入 参考图像 + 动作序列,生成完整动画。
  • 训练过程中采用 分布感知 ID 适配器(Distribution-aware ID Adapter),减少时序层的干扰,提高身份一致性。

Pose + ID 结合

  • PoseNet 提取人体姿态。
  • Face Encoder 保持面部细节,避免 ID 失真。
  • 采用 扩散模型,逐步生成连贯的动画帧。

 


 

2. 适用场景

 

StableAnimator 适用于多个 AI 生成动画应用场景:

 

1️⃣ AI 视频生成

  • 静态人物图像转换为高保真动画
  • 适用于 短视频、影视、社交媒体动画

2️⃣ 虚拟偶像 & VTuber

  • 保持虚拟人物形象一致,增强动画真实性。
  • 适用于 AI 驱动的 VTuber 直播、数字人动画

3️⃣ 影视制作 & 数字营销

  • 电影级动画,支持复杂人物运动和相机控制。
  • 适用于 广告、短片、动画制作

4️⃣ 游戏 & 交互式 AI

  • 生成 游戏角色动画,适用于 RPG、元宇宙、NPC 交互
  • 增强虚拟世界中的 AI 角色表现力

 


 

3. 使用方法

 

📌 3.1 环境安装

 

StableAnimator 需要 Python 3.8+,并推荐使用 CUDA 12.4+

 
pip install torch==2.5.1 torchvision==0.20.1 torchaudio==2.5.1 --index-url https://download.pytorch.org/whl/cu124
pip install xformers
pip install -r requirements.txt

 


 

📌 3.2 下载预训练模型

 

        StableAnimator 依赖 SVD(Stable Video Diffusion)Face Encoder,需要下载相关模型权重:

 
cd StableAnimator
git lfs install
git clone https://huggingface.co/FrancisRing/StableAnimator checkpoints
 
StableAnimator/
├── checkpoints
│   ├── DWPose
│   ├── Animation
│   ├── SVD
│   └── inference.zip

 


 

📌 3.3 运行推理

 

StableAnimator 提供了 基础版(basic)HJB 优化版(op) 推理脚本。

 

1️⃣ 基础版推理
 
bash command_basic_infer.sh

 

  • 适用于普通 GPU 运行,生成 512×512 或 576×1024 分辨率视频。

 

2️⃣ HJB 优化版推理
 
bash command_op_infer.sh

 

  • 采用 HJB 方程优化,增强面部细节,提高身份一致性。

 

3️⃣ Python 代码推理
 
from stableanimator import StableAnimatorModel

model = StableAnimatorModel()
output_video = model.animate(image="input.jpg", motion="motion.mp4")
output_video.save("output.mp4")

 


 

📌 3.4 运行 Gradio 在线 Demo

 
python app.py

 

📌 然后在浏览器中打开 Gradio 界面,进行动画测试。

 


 

4. 示例

 

📌 示例 1:静态人物动画

 

输入
  • 参考图像(静态人物照片)
  • 目标动作(人体姿态序列)

 

代码
 
output_video = model.animate(image="input.jpg", motion="dance.mp4")
output_video.save("output.mp4")

 

📌 生成一个高保真的人物动画

 


 

📌 示例 2:身份保持动画

 

输入
  • 参考图像
  • Pose 序列
  • HJB 优化

 

代码
 
output_video = model.animate(image="person.jpg", motion="run.mp4", use_hjb=True)
output_video.save("id_preserve.mp4")

 

📌 保证动画过程中人物面部一致性

 


 

📌 示例 3:不同姿势的身份保持动画

 
output_video = model.animate(image="portrait.jpg", motion="boxing.mp4", use_hjb=True)
output_video.save("boxing_animation.mp4")

 

📌 适用于运动分析、体育动画等场景

 


 

5. 研究背景 & 论文

 

        StableAnimator 由 复旦大学、微软亚洲研究院、卡内基梅隆大学 研究团队开发,并将在 CVPR 2025 发表。

 

📜 论文引用

 
@article{tu2024stableanimator,
  title={StableAnimator: High-Quality Identity-Preserving Human Image Animation},
  author={Shuyuan Tu and Zhen Xing and Xintong Han and Zhi-Qi Cheng and Qi Dai and Chong Luo and Zuxuan Wu},
  journal={arXiv preprint arXiv:2411.17697},
  year={2024}
}

 


 

6. 结论

 

🔥 StableAnimator 是目前最先进的“身份保持”动画生成框架,适用于高质量视频生成、虚拟偶像、电影制作等场景。
🔹 无需面部修复工具,直接生成高质量动画。
🔹 采用 HJB 方程优化,增强身份一致性。
🔹 端到端扩散模型,输入静态图像 + 运动轨迹,输出完整动画。

 

💡 如果你想要生成“高质量、身份一致的 AI 动画”,StableAnimator 是最值得尝试的模型之一! 🚀

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CCSBRIDGE

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值