- 博客(13)
- 收藏
- 关注
原创 【SLAM核心库全景指南:从原理到实战】
SLAM技术涉及多学科交叉,其开发离不开一系列强大的开源库支持。本文将深入剖析SLAM开发中的核心库,通过理论讲解和代码实践相结合的方式,帮助读者构建完整的SLAM知识体系。(里面的代码是使用举例,还不能直接运行,要按照自己的实际情况修改代码)
2025-06-10 10:56:52
1065
原创 【2D与3D SLAM中的扫描匹配算法全面解析】
方法类型PCL类名优点缺点适用场景点到点ICP实现简单,通用性强收敛慢,对初始位置敏感通用3D配准点到面ICP收敛快,精度高需要法线计算结构化环境GICP结合点和面信息,更鲁棒计算复杂度高复杂环境NDT对初始位置不敏感,效率高依赖网格分辨率设置大场景,自动驾驶利用特征,全局配准依赖特征提取质量无初始猜测的情况。
2025-06-09 10:30:10
1473
原创 【VINS-Fusion 深度解析:从多传感器原理到工程实现】
VINS-Fusion是VINS-Mono的扩展升级版,通过多传感器(双目相机、IMU、GPS)融合显著提升了定位精度。其核心技术包括:1) IMU预积分与视觉特征联合优化;2) 改进的边缘化策略;3) 双目视觉的深度直接测量。相比VINS-Mono,在EuRoC数据集上定位精度提升27-40%。系统采用滑动窗口优化,兼顾实时性与精度,但需精确的传感器标定。未来可探索更鲁棒的初始化方法和深度学习方法增强特征跟踪。
2025-06-05 18:07:50
1069
原创 【VINS-Mono算法深度解析:边缘化策略、初始化与关键技术】
VINS系列算法是基于视觉-惯性融合的高精度导航系统,核心分为数据预处理、系统初始化、滑窗VIO和回环检测四个模块。关键技术包括光流跟踪、IMU预积分和紧耦合优化。边缘化策略通过FEJ原理保持系统可观测性,差异化处理关键帧和非关键帧。与ORB-SLAM3相比,VINS采用滑动窗紧耦合优化和单位球面投影。初始化阶段通过视觉-惯性对齐恢复尺度与重力,并对退化运动进行特殊处理。基础矩阵在低视差场景下提供更稳定的位姿估计。算法通过Ceres实现边缘化因子,确保高效优化与约束保留。
2025-06-04 10:52:50
845
原创 【视觉SLAM基础(三):光流法与直接法】
光流法和直接法是视觉SLAM中两种重要的运动估计方法。它们都基于图像的亮度不变假设,但实现方式和应用场景有所不同。本文将系统介绍这两种方法的原理,并通过TUM数据集上的实践展示具体实现。
2025-06-03 10:40:38
1161
原创 【视觉SLAM基础(二):特征点提取与匹配】
本文介绍了视觉SLAM中特征点的提取与匹配方法,重点阐述了ORB特征的实现原理及其OpenCV应用。首先讲解了FAST关键点检测和BRIEF描述子生成的基本概念,并通过代码演示了ORB特征的提取过程。接着详细介绍了特征匹配的两种主要方法(暴力匹配和FLANN匹配)及OpenCV实现。在运动估计部分,解释了对极几何原理和八点法求解本质矩阵,并提供了相机位姿估计的代码示例。最后简要提及了三角测量原理,为后续3D点云重建奠定基础。全文通过理论与实践结合,为视觉里程计的实现提供了完整的技术路线。
2025-05-30 10:37:31
1467
原创 【视觉SLAM基础(一):视觉传感器与几何基础】
视觉SLAM(Simultaneous Localization and Mapping)是机器人感知领域的重要技术,而相机作为视觉SLAM的核心传感器,其成像原理和相关几何知识是理解整个系统的基石。本文将详细介绍相机成像模型、内外参数、畸变矫正等核心概念,最后还有OpenCV实践。
2025-05-29 10:27:44
1017
原创 【SLAM中的点云处理:从基础到实战】
本文分享了SLAM中点云处理的核心技术与实践方法。首先介绍了点云在激光雷达SLAM、三维重建等领域的核心作用,以及四大基础任务(最近邻搜索、几何拟合、滤波降采样、配准与特征提取)。详细讲解了点云数据结构、刚体变换数学表示,以及KD-Tree、RANSAC等关键算法原理与PCL实现。重点解析了滤波(体素网格、离群点去除)、ICP配准、法向量和FPFH特征提取等核心算法,并提供了完整的桌面物体提取实战案例。
2025-05-25 11:32:22
1212
原创 【LOAM系列算法原理对比与分析】
本文对比了LOAM、A-LOAM、LeGO-LOAM和LIO-SAM四种SLAM算法在特征提取、位姿估计和优化框架等方面的原理差异。LOAM通过双特征分类和双线程架构实现实时性与精度的平衡;A-LOAM在LOAM基础上进行了工程化优化;LeGO-LOAM引入地面分割和轻量化设计,适用于资源受限场景;LIO-SAM则采用紧耦合多传感器因子图优化,提升了复杂环境下的鲁棒定位能力。这些算法的演进反映了SLAM技术从单一传感器到多传感器融合、从独立处理到紧耦合优化、从纯几何方法到语义辅助的发展趋势。理解这些差异有助
2025-05-23 09:38:45
1175
原创 【LIO-SAM 技术深度解析:原理、实现与部署全指南】
LIO-SAM是一种紧耦合的激光-惯性里程计框架,其核心创新在于多因子约束的图优化模型,通过IMU、激光雷达和GPS等传感器的数据融合,实现高精度的定位与建图。系统采用增量平滑和建图(iSAM2)算法进行优化,通过IMU预积分和激光特征提取等前端处理,结合因子图更新和边缘化处理,有效控制误差累积。LIO-SAM在IMU预积分和激光雷达处理方面进行了多项改进,如偏置自适应估计、协方差传播、自适应曲率阈值和多尺度特征提取等,显著提升了系统性能。部署LIO-SAM需要配置ROS Melodic环境,并安装GTSA
2025-05-22 11:43:44
1234
原创 【从LOAM到LeGO-LOAM:我的激光SLAM进阶之路】
LeGO-LOAM作为LOAM的轻量化改进版本,在SLAM领域展现了显著的性能提升。本文分享了学习LeGO-LOAM的心得,并对比了LOAM、A-LOAM和LeGO-LOAM的异同。LeGO-LOAM通过地面分割优化、两步优化策略、点云聚类与筛选以及回环检测集成等核心改进,显著降低了内存占用和计算量,提升了特征提取效率和轨迹精度。具体改进包括:地面分割减少处理点数,两步优化提高数值稳定性,点云聚类提升特征匹配准确率,回环检测减少累积误差。工程实践中,参数调优如地面分割阈值和特征点数量的设置对性能有重要影响。
2025-05-21 11:38:56
1061
原创 【LOAM与A-LOAM学习笔记:从原理理解到面试准备】
文章主要介绍了激光SLAM中的两个重要算法:LOAM和A-LOAM。LOAM作为经典算法,通过特征提取、双线程架构和运动补偿实现了高效的激光SLAM。A-LOAM则在LOAM的基础上进行了代码结构优化、优化求解改进和畸变校正优化,提升了系统的可读性和运行效率。文章还分享了学习过程中的实践经验,如特征点数量的优化、环境适应性处理等,并整理了常见的面试问题及回答思路。最后,作者建议学习SLAM时应先理解整体框架,再通过实践和可视化分析深化理解,并计划进一步学习LeGO-LOAM。
2025-05-20 16:07:40
1217
原创 2D SLAM算法深度对比:Gmapping与Cartographer的工程实践指南
本文深入探讨了2D SLAM算法Gmapping和Cartographer的优化策略,重点分析了代码层面的改进。Gmapping通过并行化重采样和动态调整阈值,提升了计算效率并适应动态环境变化。Cartographer则通过引入动态分辨率子图和子图缓存机制,解决了内存消耗和计算量过大的问题。这些优化不仅展示了具体代码实现,还详细解释了设计原理和实现考量,为机器人自主导航领域的工程实践提供了有价值的参考。
2025-05-16 11:16:31
921
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人