【LOAM系列算法原理对比与分析】

一、特征提取机制对比

特征分类方式

算法特征类型提取标准
LOAM边缘点+平面点基于局部曲率阈值,固定比例选取(边缘2%,平面4%)
A-LOAM边缘点+平面点同LOAM,但计算效率优化
LeGO-LOAM地面点+非地面边缘点先进行地面分割(基于角度阈值),再从非地面点提取边缘特征
LIO-SAM边缘点+平面点结合IMU信息进行运动补偿后的特征提取

关键差异:LeGO-LOAM引入地面分割先验,LIO-SAM强调运动补偿后的特征质量

二、位姿估计原理对比

2.1 匹配策略

算法匹配方法目标函数
LOAM点到线+点到面ICP最小化距离误差(基于LM优化)
A-LOAM同LOAM,使用Eigen加速计算同LOAM
LeGO-LOAM分步优化:先地面后边缘地面特征优化Z轴,边缘特征优化XY平面
LIO-SAM紧耦合的激光-IMU联合优化因子图优化(iSAM2)

核心演进:从纯激光匹配→分步优化→多传感器联合优化

2.2 运动补偿

// LOAM/A-LOAM的线性插值补偿
PointType deSkewedPt;
float ratio = (pt.time - scanStartTime) / scanPeriod;
deSkewedPt.x = pt.x - ratio * transform[3];
// ...其他维度类似...

// LIO-SAM的IMU辅助补偿
Eigen::Vector3d un_gyr = 0.5 * (gyr_0 + angular_velocity) - bias_g;
delta_q = delta_q * Quaterniond(1, un_gyr(0)*dt/2, un_gyr(1)*dt/2, un_gyr(2)*dt/2);

三、优化框架对比

3.1 架构设计

算法优化架构关键特点
LOAM双线程松耦合前端里程计(10Hz)+后端建图(1Hz)
A-LOAM同LOAM代码优化但架构不变
LeGO-LOAM带关键帧的位姿图引入基于距离的关键帧选择,增加回环检测
LIO-SAM紧耦合因子图IMU预积分因子+激光因子+GPS因子统一优化

3.2 数学表达对比

LOAM

argmin(Σ||E_edge(p_i, T)||² + Σ||E_plane(p_j, T)||²)

LIO-SAM

argmin(Σ||E_IMU||² + Σ||E_lidar||² + Σ||E_GPS||² + Σ||E_loop||²)

四、关键创新点对比

4.1 各算法核心贡献

算法核心创新解决的问题
LOAM双特征分类+双线程架构激光SLAM的实时性与精度平衡
A-LOAM工程化实现优化降低使用门槛
LeGO-LOAM地面优化+轻量化设计资源受限场景应用
LIO-SAM紧耦合多传感器因子图复杂环境下的鲁棒定位

五、原理演进路线

  1. 特征提取
    固定比例曲率特征 → 语义辅助分割 → 运动补偿特征

  2. 位姿估计
    纯激光匹配 → 分步优化 → 多传感器紧耦合

  3. 优化框架
    松耦合双线程 → 位姿图优化 → 全局因子图

六、典型场景性能对比

6.1 室内结构化环境

  • LOAM/A-LOAM:表现优异(特征丰富)
  • LeGO-LOAM:地面分割带来额外优势
  • LIO-SAM:IMU帮助解决激光退化问题

6.2 室外大尺度场景

  • LIO-SAM:GPS防止漂移,表现最佳
  • LOAM系列:需结合回环检测防漂移

6.3 动态环境

  • LeGO-LOAM:聚类过滤动态物体能力较强
  • LIO-SAM:IMU提供运动先验

七、总结

LOAM系列算法的原理演进体现了SLAM技术的发展趋势:

  1. 从单一传感器到多传感器融合
  2. 从独立处理到紧耦合优化
  3. 从纯几何方法到语义辅助
  4. 从通用框架到场景适配优化

理解这些原理层面的差异,有助于在实际项目中正确选择和使用合适的算法。每个算法都在特定场景下有不可替代的优势,关键是根据应用需求进行合理选型和配置。

LOAM-Livox是基于Livox激光雷达的LOAM(Lidar Odometry and Mapping)算法的一个变种。传统的LOAM算法相比,LOAM-Livox算法在激光雷达硬件上有所改进和优化。 LOAM-Livox算法原理和传统LOAM算法类似,也是通过激光雷达数据进行机器人的定位和建图。它同样包括前端和后端两个模块。 前端模块主要负责激光雷达数据的处理和特征提取。LOAM-Livox使用了Livox激光雷达的点云数据,并针对Livox激光雷达的特点进行了适应性调整。由于Livox激光雷达使用了固定角度分辨率和固定线数的设计,LOAM-Livox算法首先对点云数据进行去噪和滤波处理。然后,它使用曲率特征来提取特征点,并进行特征匹配。 后端模块通过优化方法对特征点的匹配关系进行优化,从而估计机器人的位姿和构建地图。LOAM-Livox算法使用了基于因子图的非线性优化方法,通过最小化特征点匹配误差来优化机器人位姿,同时考虑了激光雷达的时间同步和畸变校正。 整个算法的核心思想仍然是通过特征点提取和匹配来估计机器人的位姿变化,并通过优化算法进一步优化位姿和地图。LOAM-Livox算法在适应Livox激光雷达硬件特点的同时,保持了LOAM算法的实时性和精度。 总结来说,LOAM-Livox算法是基于Livox激光雷达的LOAM算法的一个变种,通过对Livox激光雷达数据的处理和特征提取,以及优化方法,实现了机器人的定位和建图功能。它在适应特定激光雷达硬件上有一定的优势,并广泛应用于无人驾驶、机器人导航等领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值