Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images

论文:Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images

背景

  • 从单一角度来推断三维形状对于计算机说具有挑战,值得研究。

  • 现有技术:

    基于体素单一角度来推断三维形状,计算量大,精度与分辨率之间难以平衡。

    基于点云单一角度推断三维形状,点云之间缺少连接,重建之后表面不光滑

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-zLYiAjjk-1659582541609)(C:\Users\pro\AppData\Roaming\Typora\typora-user-images\1659343627176.png)]

提出问题:
  • 能否用三角网格来根据单张RGB图像信息进行三维重建
可行性分析:
  • 网格是轻量级的
  • 网格可以对三维形状细节进行建模

挑战:
  • 如何在神经网络中表示一个网络模型(不规则的图),而且要从二维规则网络给定颜色图像中提取形状细节
  • 如何让更新顶点的位置,让越来越与图像中的形状靠近
贡献:
  • 第一次提出了端到端的从单张RGB图像到三维模型的神经网络
  • 设计了投影层,将感知的图像特征融入以GCN为代表的三维几何中
  • 网络从粗到细进行学习,更可靠。
解决方案:
  • 对于挑战一:

如何在网络中表示一个网格模型?如何从颜色图像中提取形状细节?

作者采用GCN网络,将网格看出点与边连接的拓扑结构,GCN模型可以用来训练拓扑结构。对于单张图片,作者采用了VGG-16模型从颜色图像中提取基于形状特征。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值