论文:Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
背景
-
从单一角度来推断三维形状对于计算机说具有挑战,值得研究。
-
现有技术:
基于体素单一角度来推断三维形状,计算量大,精度与分辨率之间难以平衡。
基于点云单一角度推断三维形状,点云之间缺少连接,重建之后表面不光滑
提出问题:
- 能否用三角网格来根据单张RGB图像信息进行三维重建
可行性分析:
- 网格是轻量级的
- 网格可以对三维形状细节进行建模
挑战:
- 如何在神经网络中表示一个网络模型(不规则的图),而且要从二维规则网络给定颜色图像中提取形状细节
- 如何让更新顶点的位置,让越来越与图像中的形状靠近
贡献:
- 第一次提出了端到端的从单张RGB图像到三维模型的神经网络
- 设计了投影层,将感知的图像特征融入以GCN为代表的三维几何中
- 网络从粗到细进行学习,更可靠。
解决方案:
- 对于挑战一:
如何在网络中表示一个网格模型?如何从颜色图像中提取形状细节?
作者采用GCN网络,将网格看出点与边连接的拓扑结构,GCN模型可以用来训练拓扑结构。对于单张图片,作者采用了VGG-16模型从颜色图像中提取基于形状特征。