自监督学习(十八)Contrastive Learning with Stronger Argumetations

Introduction

本文目前是放在ICLR2021的审稿网站,还没有正式的意见。但是文章的实验效果非常强,超过了之前一众的contrastive方法,并且已经非常接近监督学习的效果了。文章地址:Contrastive Learning with Stronger Argumetations

文章指出现有的对比学习方法中,一些数据增强的操作可能会导致变换后的图像与原图的差异过大,强行让网络提取出相似的特征反而会减弱自监督学习的效果。如下图所示:
在这里插入图片描述
最左边是原图,右边两张为变换后的图像,可以看出,最右边的图像和原图的差异已经非常大了,这种差异甚至有可能大于原图和其他图像的差异。这种情况在之前的对比学习方法中很难必要,而这反而会削弱特征学习的效果。作者在文中提出的解决方法是,将数据的增广操作划分为两大类,一类是不会显著改变图像视觉效果,叫做Weaker Augmentations;另一类是可能使图像发生非常大的变化的,叫做Strongerer Augmentations。然后作者在训练网络的时候,增加了一个新的损失函数,不是直接限制变换图像与原图的特征,而是通过优化原图与弱变换图像、弱变换图像与强变换图像之间的分布,达到特征学习的目的,消除上述的影响。在ImageNet的线性分类任务上,该方法最高可以达到76.2%的Top1精度,而监督学习的精度为76.5%,已经非常接近了。

Method

假设输入的图像表示为 x i x_i xi,经过弱变换和强变换后的图像分别表示为 x i ′ x_i' xi x i ′ ′ x_i'' xi,经过网络的特征提取以及MLP的映射,最终得到的特征表示为 z i z_i zi z i ′ z_i' zi z i ′ ′ z_i'' zi。训练网络的损失函数由两部分组成,首先是延续之前的对比学习的方法,求 z i z_i zi z i ′ z_i' zi的对比损失函数:
在这里插入图片描述
其中 s i m sim sim表示的是两个特征向量的相似程度,用余弦相似度表示:
在这里插入图片描述
第二部分的损失函数表示为如下的形式:
在这里插入图片描述
其中 p ( z k ∣ z i ′ ) p(z_k|z_i') p(zkzi)表示联合概率分布:
在这里插入图片描述
上面的损失函数可以理解为直接用原图和强变换图像的特征计算损失函数,有时候会导致差异过大,影像性能,这时候使用弱变化的图像在中间搭一个桥,可能过渡的会自然一些。有点类似于网络蒸馏的思路

Experiments

Linear Classification on ImageNet

固定Resnet50的特征提取层,训练线性分类器,计算ImageNet的分类精度,得到的效果如下:
在这里插入图片描述
可以看出,该方法超过了之前的对比学习方法,而且和监督学习的方法已经很接近了。

Transfer learning results on various downstream tasks

在Voc07数据集上进行测试,计算分类的精度和检测的精度:
在这里插入图片描述
该方法完全超过了ImageNet预训练方法。

Conclusion

数据增广操作可能导致变换后的图像和原图差异过大,影响网络学习的效果,而这一点在之前的文章中很少被提及。作者在文中考虑了这个因素,提升了效果。这个也为之后的自监督学习方法提供了一个新的改进思路,尽管标签可以自动生成,但是应该更注重于标签生成的有效性,否则可能会降低自监督学习的效果。

  • 2
    点赞
  • 9
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
自监督对比学习是一种无监督学习方法,旨在通过将数据样本与其在相同任务下的变体进行比较来进行特征学习。其核心思想是将一个样本与自身的不同变体进行对比,以推动特征的区分度增加。 在自监督对比学习中,通常使用一种转换函数对输入样本进行变换,生成多个变体。这些变换可以是图像旋转、裁剪、亮度调整等,也可以是对文本数据进行掩码、重排等操作。对于每个输入样本及其变体,模型将利用一个对比损失函数来度量它们之间的相似性。 通过自监督对比学习,模型会学习到一组鲁棒的特征表示。这些特征不仅能够区分同一样本与其变体,还能够区分不同样本之间的差异。通过不同样本之间的对比学习,模型可以学习到更加丰富的语义信息,提高数据的表征能力。 自监督对比学习在计算机视觉和自然语言处理等领域得到了广泛的应用。例如,在图像领域,可以利用自监督对比学习来学习图像中的局部特征、形状和纹理等信息。而在自然语言处理领域,可以通过对文本进行掩码、重排等方式来进行自监督对比学习,以学习词语、句子和文档的语义表示。 自监督对比学习的窥探给了我们一个更好的方式,通过无监督学习方法来解决许多现实世界中的问题。它为我们提供了一种从大规模数据中学习有用表示的方式,提高了学习算法的效率和泛化性能。通过进一步的研究和发展,自监督对比学习注定将在更多的领域中发挥重要的作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值