GraphCL: Graph Contrastive Learning with Augmentations笔记

NeurIPS 2020- Graph Contrastive Learning with Augmentations


在这里插入图片描述
https://github.com/Shen-Lab/GraphCL

使用最基础的contrastive loss 处理图graph-level的tasks, 包括self-supervised, semi-supervised graph classification,

主要贡献是提出4种不同的augmentations.
在这里插入图片描述
在这里插入图片描述

contrastive learning algorithm

使用最经典的方法
在这里插入图片描述
在这里插入图片描述

pretraining model for molecular proporty predition

本文发现不同数据集适合不同的data 增广的方式
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值