时域采样与频域采样实验【matlab】

时域采样定理

给定模拟信号 : x ( t ) = A e − a t s i n ( Ω t ) u ( t ) , 式 中 A = 444.128 , a = 50 2 , Ω = 50 2 r a d / s x(t) = Ae^{-at}sin(\Omega t)u(t) ,式中A=444.128,a= 50\sqrt{\smash[b]{2 }},\Omega =50\sqrt{\smash[b]{2 }} rad/s x(t)=Aeatsin(Ωt)u(t),A=444.128,a=502 ,Ω=502 rad/s
现用DFT求该模拟信号的幅频特性,已验证时域采样定理。

Tp=64/1000;  %观察时间 Tp=64微妙
%Fs=1000Hz
Fs=1000; T=1/Fs;
M=Tp*Fs; n=0:max(M-1,64);
A=444.128; alpha=pi*50*2^0.5; omega=pi*50*2^0.5;
xnt=A*exp(-alpha*n*T).*sin(omega*n*T);
Xk=fft(xnt,M); 
subplot(3,2,1);
stem(n,xnt,'.');  %
xlabel('n');
title('Fs=1000Hz');
k=0:M-1; fk=k/Tp;
subplot(3,2,2);plot(fk,abs(Xk));
xlabel('f(Hz)');
ylabel('幅度');

title('T*FT[xa(nT)],Fs=1000Hz');
%FS=300HZ
Fs=300;T=1/Fs;
M=Tp*Fs;n=0:max(M-1,64);
A=444.128;alpha=pi*50*2^0.5;omega=pi*50*2^0.5;
xnt=A*exp(-alpha*n*T).*sin(omega*n*T);
Xk=fft(xnt,M);
subplot(3,2,3);
stem(n,xnt,'.');
xlabel('n');
title('Fs=300Hz');
k=0:M-1;fk=k/Tp;
subplot(3,2,4);plot(fk,abs(Xk));
xlabel('f(Hz)');
ylabel('幅度');
title('T*FT[xa(nT)],Fs=300Hz');
%Fs=200HZ
Fs=200;T=1/Fs;
M=Tp*Fs;n=0:max(M-1,64);
A=444.128;alpha=pi*50*2^0.5;omega=pi*50*2^0.5;
xnt=A*exp(-alpha*n*T).*sin(omega*n*T);
Xk=fft(xnt,M);
subplot(3,2,5);n=0:length(xnt)-1;
stem(n,xnt,'.');
xlabel('n');
title('Fs=200Hz');
k=0:M-1;fk=k/Tp;
subplot(3,2,6);plot(fk,abs(Xk));
xlabel('f(Hz)');
ylabel('幅度');
title('T*FT[xa(nT)],Fs=200Hz');

实验结果:
在这里插入图片描述

频域采样定理

给定信号如下:
x ( n ) = { n + 1 0 ≤ n ≤ 13 27 − n 1 4 ≤ n ≤ 26 0 其他 x(n)= \begin {cases} n+1 &\text 0 \leq n \leq 13 \\ 27-n &\text 14 \leq n \leq 26\\ 0 &\text{其他} \end{cases} x(n)=n+127n00n1314n26其他
编程分别对频谱函数 X ( e j w ) = F T [ x ( n ) ] X(e^{jw})=FT[x(n)] X(ejw)=FT[x(n)] 在区间【0,2 π】上等间隔采样32点和16点。

M=27; N=32; n=0:M;
%产生M长三角波序列
xa=0:floor(M/2);   % floor()向下取整,ceil()向上取整
xb=ceil(M/2)-1:-1:0;
xn=[xa,xb];
XK=fft(xn,1024);  %近似xn的TF序列
X32K=fft(xn,32);  %32点采样
X32n=ifft(X32K);  %恢复 
X16K=fft(xn,16);
X16n=ifft(X16K);
subplot(3,2,1);stem(n,xn,'.');
xlabel('n');title('xn');
subplot(3,2,2);plot(abs(XK));
xlabel('w/pi');ylabel('幅值');title('|FT(xn)|');axis([0,1050,0,200]);
n1=0:N/2-1;
subplot(3,2,3);stem(X16n,'.');
xlabel('n');title('16点采样');
k=0:N/2-1;
subplot(3,2,4);stem(k,abs(X16K),'.');
xlabel('k');ylabel('|x_1_6(k)|');
title('16点频域采样');
n2=0:N-1;
subplot(3,2,5);stem(n2,X32n,'.');
xlabel('n');title('32点采样');
k=0:N-1;
subplot(3,2,6);stem(k,abs(X32K),'.');
xlabel('k');ylabel('|x_3_2(k)|');
title('32点频域采样');

实验结果:
在这里插入图片描述

### 回答1: 基于matlab时域采样定理演示系统是一种用于演示时域采样定理的软件系统。该系统可以通过matlab编程语言实现,通过图形界面展示时域采样定理的原理和应用。 该系统可以实现以下功能: 1. 生成任意信号的时域波形,并进行采样。 2. 对采样后的信号进行重构,还原原始信号。 3. 展示采样定理的原理和应用,包括采样频率的选择、采样误差的影响等。 4. 提供交互式界面,方便用户进行操作和观察。 该系统可以应用于教学、研究和工程实践等领域,帮助用户更好地理解和应用时域采样定理。 ### 回答2: 时域采样定理是数字信号处理中的重要概念之一,它指出:如果连续时间信号的最高频率是$f_m$,那么需要以每秒至少采样$2f_m$次的采样率进行离散化处理。这样离散化后的信号就可以被存储在计算机中,并进行数字信号处理。 为了演示时域采样定理的原理和过程,可以使用MATLAB编写时域采样定理演示系统。该系统以用户输入的信号为基础,对其进行采样和重构,以可视化形式呈现原始信号和经过采样后的离散信号之间的区别。 该系统的主要功能和流程如下: 1. 用户输入时域信号:用户可以手动输入时间序列数据,也可以导入外部文件作为信号源。 2. 信号采样:根据时域采样定理,确定采样率,对信号进行采样,并将采样后的信号以时间序列和采样值的形式呈现。 3. 重构离散信号:将采样得到的离散信号通过一定的重构算法,转换为原始信号在一定范围内的近似值,并将其以时间序列和重构值的形式呈现,以展示重构误差。 4. 误差分析:计算原始信号与重构信号之间的误差,并将误差值以曲线图的形式呈现,以便用户更直观地了解信号重构的效果。 5. 参数调整:用户可以根据误差分析和对信号重构效果的评估,调整采样率、重构算法等参数进行优化。 6. 结果保存:用户可以将采样后的离散信号、重构结果和相关参数保存为文件,方便后续的使用和分析。 通过这个时域采样定理演示系统,可以使用户更加深入地理解时域采样定理的原理和应用,并掌握数字信号处理的基本方法和技术。同时,这个系统也可以作为数字信号处理的教学工具,在教学实践中发挥重要作用。 ### 回答3: 时域采样定理是数字信号处理中的基本理论之一,它阐述了对连续时间信号进行采样再进行恢复的一种方法,可以准确地重建原始信号。 基于MATLAB时域采样定理演示系统可以实现对采样定理的直观理解和演示,主要包括以下内容: 1. 信号生成:可以生成常见的信号形式,如正弦波、方波、三角波等,也可以导入外部数据文件作为原始信号。 2. 采样操作:通过设置采样间隔和采样率进行采样操作,将连续时间信号转化为离散时间信号,并输出采样后的序列。 3. 重建操作:采样后的离散时间信号需要进行重建操作才能得到原始信号,主要有插值法和欠采样法两种方法,用户可以自由选择。 4. 重建效果分析:对比原始信号和重建后的信号,可以分析重建的效果,并且可以计算误差和失真度等指标,量化分析重建质量。 5. 变换算法:可以选择不同的变换算法,如快速傅里叶变换(FFT)、离散余弦变换(DCT)等,可以在重建过程中应用,提高重建效果。 基于MATLAB时域采样定理演示系统可以帮助学生深入理解采样定理的原理和应用,同时也是研究人员和工程师进行数字信号处理实验和仿真的重要工具之一。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值