- 博客(7)
- 收藏
- 关注
原创 知识图谱补全技术-ConvE篇
ConvE(Convolutional Knowledge Graph Embedding)是一种用于知识图谱补全的模型,它通过卷积神经网络(CNN)来学习知识图谱中的实体和关系的嵌入表示,从而预测缺失的三元组。其主要思想是将传统的知识图谱嵌入方法与卷积神经网络相结合,以提高模型的表达能力和推理能力。ConvE通过卷积神经网络和非线性操作,有效增强了知识图谱中实体和关系嵌入的交互特性,提升了知识图谱补全任务的表现。
2024-09-19 20:53:10 897
原创 知识图谱补全技术-Recsal篇
随着知识图谱在搜索引擎、推荐系统等领域的广泛应用,如何补全图谱中的缺失信息成为一个重要的研究方向。知识补全的任务是根据已知的三元组(头实体-关系-尾实体)推断出未知的三元组,从而完善知识图谱。然而,知识图谱中的关系复杂多样,很多传统模型如 TransE 等只能处理简单的线性关系,对于多对多的复杂关系表现不佳。为了解决这一问题,Rescal 模型被提出。与 TransE 等模型将关系表示为向量不同,Rescal 使用矩阵来表示关系,这使得它能够捕捉到更复杂的实体交互。
2024-09-16 17:20:47 1302
原创 西储大学(CWRU)数据集
在机器学习、信号处理和故障诊断领域,西储大学(Case Western Reserve University,简称CWRU)提供了一个非常重要的振动信号数据集——CWRU数据集。该数据集主要用于旋转机械的轴承故障检测,并且已经成为了该领域广泛使用的标准数据集之一。西储大学工程学院开发的轴承数据集源于其机械工程实验室,旨在通过采集机械振动信号进行轴承故障的检测和诊断。机械设备中的轴承是最常见且关键的组件之一,而轴承的故障会导致设备损坏、性能降低,甚至造成重大安全事故。
2024-09-16 15:08:57 1835
原创 知识图谱构建
例如:在大数据和人工智能技术飞速发展的今天,知识图谱(Knowledge Graph, KG)作为一种创新的知识组织和表示形式,已经在多个领域得到了广泛的应用和认可。知识图谱通过节点和边的图结构形式来描述实体及其关系,为搜索引擎、推荐系统、智能问答等应用提供了强大的语义支撑和逻辑推理能力,从而显著提升了这些系统的智能化水平。知识图谱的构建通常依赖于三元组数据(Triples),即由“实体-关系-实体”组成的基本单元。
2024-08-04 18:09:16 1029
原创 知识图谱补全技术-DistMult篇
在自然语言处理和机器学习领域,知识图谱是一种至关重要的数据结构。知识图谱通过节点表示实体,边表示实体之间的关系,构建了一个复杂的网络结构。在知识图谱中,如何高效地表示实体和关系是一个关键问题。为了解决这个问题,知识图谱补全技术应运而生。它通过预测和填补知识图谱中的缺失三元组,增强了数据的完整性和实用性。知识图谱补全技术利用嵌入模型和图神经网络等先进的机器学习方法,广泛应用于搜索引擎、推荐系统和智能问答系统等领域,从而显著提升了这些系统的性能和用户体验。
2024-05-21 17:52:40 2662
原创 知识图谱补全技术-TransE篇
TransE通过将知识图谱中的实体和关系嵌入到低维向量空间,并使用简单的线性变换来表示实体之间的关系,提供了一种有效的方法来处理知识图谱嵌入任务。虽然它在处理复杂关系上存在一定的局限性,但其简单性和高效性使其成为知识图谱嵌入的一个重要基准方法。TransE模型通过将知识图谱中的实体和关系嵌入到低维向量空间,并使用简单的线性变换来表示实体之间的关系,提供了一种有效的知识图谱嵌入方法。虽然在处理复杂关系方面存在一定局限,但其简单性和高效性使其成为知识图谱嵌入的一个重要基准方法。
2024-05-20 17:27:41 2999
原创 知识图谱补全
知识图谱(Knowledge Graph, KG)是以图的形式表示实体及其关系的结构化知识库。其广泛应用于搜索引擎、推荐系统、智能问答等领域。然而,知识图谱在构建过程中难免会出现不完整的问题,因此知识图谱补全(Knowledge Graph Completion, KGC)成为了一个关键研究方向。KGC旨在预测缺失的关系或实体,从而增强知识图谱的完备性。
2024-05-19 10:08:44 2337
空空如也
CSDN有公开的API嘛
2024-05-29
TA创建的收藏夹 TA关注的收藏夹
TA关注的人