EnzyACT——融合图技术和蛋白质嵌入预测突变蛋白活性变化

论文链接:EnzyACT: A Novel Deep Learning Method to Predict the Impacts of Single and Multiple Mutations on Enzyme Activity | Journal of Chemical Information and Modeling (acs.org)

文章摘要 

            酶工程涉及通过引入突变来定制酶,以扩大天然酶的应用范围。其中一个限制是两个关键特性(活性和稳定性)之间的复杂相互作用,其中一个特性的增强通常会导致另一个特性的降低,也称为权衡机制。尽管已经开发了数十种预测突变后蛋白质稳定性变化的方法,但对活性影响的预测仍处于早期阶段。因此,开发一种快速准确的方法来预测突变对酶活性的影响有助于酶设计和理解权衡机制。在这里,作者介绍了一种新方法 EnzyACT,这是一种深度学习方法,融合了图技术和蛋白质嵌入来预测单个或多个突变后的活性变化。作者的模型结合了基于图的技术和语言模型来预测活性变化。此外,EnzyACT是在一个新的精选数据集上训练的,包括单点和多点突变。当在多个独立数据集上进行基准测试时,它在受突变影响的问题上表现出一致的性能。这项工作还提供了对远距离突变在活动设计中的影响

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值