42 旋转图像

42 旋转图像

在这里插入图片描述

42.1 旋转图像解决方案

解决思路

  • 矩阵转置:将矩阵的第i行的第j列元素转为第j行的第i列元素,这样开源实现主对角线的镜像对称。
  • 列元素翻转:对转置后的矩阵的每一行进行左右翻转,使得最终的效果是将矩阵顺时针旋转90度。

代码

class Solution {
public:
    void rotate(vector<vector<int>>& matrix) {
        int n = matrix.size();

        // 第一步,矩阵转置
        for(int i = 0; i < n;++i){
            for(int j = i + 1; j < n;++j){
                swap(matrix[i][j],matrix[j][i]);
            }
        }

        // 第二步:每一行进行反转
        for(int i = 0; i < n; ++i){
            reverse(matrix[i].begin(),matrix[i].end());
        }

    }
};

代码分析

  • 矩阵转置
    • 转置的本质是将矩阵对角线进行对称交换。
    • 只需遍历矩阵上三角部分(j > i),避免重复操作。
    • 时间复杂度 O ( n 2 ) O(n^2) O(n2),因为每个元素最多被访问一次。
  • 行翻转
    • 通过C++的reverse函数对每一行进行左右翻转。
    • 时间复杂度:每行需要 O ( n ) O(n) O(n),共n行,总复杂度是 O ( n 2 ) O(n^2) O(n2).
  • 空间复杂度
    • 原地操作,没有使用额外空间,空间复杂度为 O ( 1 ) O(1) O(1).

42.2 举例说明

示例

matrix = [
    [1, 2, 3],
    [4, 5, 6],
    [7, 8, 9]
]
  • 矩阵转置:将元素(i,j)交换为(j,i)
    [
        [1, 4, 7],
        [2, 5, 8],
        [3, 6, 9]
    ]
    
  • 行翻转:将每一行的元素左右翻转:
    [
        [7, 4, 1],
        [8, 5, 2],
        [9, 6, 3]
    ]
    
  • 输出结果
    [
        [7, 4, 1],
        [8, 5, 2],
        [9, 6, 3]
    ]
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值