42 旋转图像
42.1 旋转图像解决方案
解决思路:
- 矩阵转置:将矩阵的第i行的第j列元素转为第j行的第i列元素,这样开源实现主对角线的镜像对称。
- 列元素翻转:对转置后的矩阵的每一行进行左右翻转,使得最终的效果是将矩阵顺时针旋转90度。
代码:
class Solution {
public:
void rotate(vector<vector<int>>& matrix) {
int n = matrix.size();
// 第一步,矩阵转置
for(int i = 0; i < n;++i){
for(int j = i + 1; j < n;++j){
swap(matrix[i][j],matrix[j][i]);
}
}
// 第二步:每一行进行反转
for(int i = 0; i < n; ++i){
reverse(matrix[i].begin(),matrix[i].end());
}
}
};
代码分析:
- 矩阵转置:
- 转置的本质是将矩阵对角线进行对称交换。
- 只需遍历矩阵上三角部分(j > i),避免重复操作。
- 时间复杂度: O ( n 2 ) O(n^2) O(n2),因为每个元素最多被访问一次。
- 行翻转:
- 通过C++的reverse函数对每一行进行左右翻转。
- 时间复杂度:每行需要 O ( n ) O(n) O(n),共n行,总复杂度是 O ( n 2 ) O(n^2) O(n2).
- 空间复杂度:
- 原地操作,没有使用额外空间,空间复杂度为 O ( 1 ) O(1) O(1).
42.2 举例说明
示例:
matrix = [
[1, 2, 3],
[4, 5, 6],
[7, 8, 9]
]
- 矩阵转置:将元素
(i,j)
交换为(j,i)
[ [1, 4, 7], [2, 5, 8], [3, 6, 9] ]
- 行翻转:将每一行的元素左右翻转:
[ [7, 4, 1], [8, 5, 2], [9, 6, 3] ]
- 输出结果:
[ [7, 4, 1], [8, 5, 2], [9, 6, 3] ]