形式化1:集合相关的概念和表示

本文介绍了集合论的基本概念,如元素与子集的关系,幂集的定义以及相等与不等关系。同时,详细阐述了关系和映射的原理,包括有序对、笛卡尔积以及函数的特性。特别地,讨论了二元关系的自反性、对称性和传递性,以及等价关系的定义和等价类的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

集合

  • a ∈ A a \in A aA:元素a是集合A的元素
  • A ⊆ B A \subseteq B AB:集合A是集合B的子集,即A的元素都是B的元素
  • A ⊂ B A \subset B AB:集合A是集合B的真子集,即A的元素都是B的元素,且A与B不相等
  • A = B A = B A=B:集合A和集合B相等
  • A ≠ B A \ne B A=B:集合A和集合B不相等
  • P ( A ) = { a ∣ a ⊆ A } \mathcal{P}(A)=\{a|a \subseteq A\} P(A)={aaA}:A的幂集,即由A的全体子集形成的集合, ∣ P ( A ) ∣ = 2 n |\mathcal{P}(A)|=2^n P(A)=2n
    例如: A = 1 , 2 A={1,2} A=1,2,则 P ( A ) = { { 1 } , { 2 } , { 1 , 2 } , ϕ } \mathcal{P}(A)=\{\{1\},\{2\},\{1,2\},\phi \} P(A)={{1},{2},{1,2},ϕ}

关系和映射

  • 有序对:两元素 ( a , b ) (a,b) (a,b)按一定次序组成的二元组,并满足基本性质:
    ( a 1 , b 1 ) = ( a 2 , b 2 )    ⟺    a 1 = a 2 且 b 1 = b 2 (a_1,b_1)=(a_2,b_2) \iff a_1=a_2 且 b_1=b_2 (a1,b1)=(a2,b2)a1=a2b1=b2
  • 笛卡尔积:集合A和集合B的笛卡尔积 A × B A \times B A×B,是由如下有序对构成的集合
    A × B = { ( a , b ) ∣ a ∈ A 且 b ∈ B } A \times B=\{(a,b)|a \in A 且b \in B\} A×B={(a,b)aAbB}
    • 有序对笛卡尔积可推广到n个元素或集合的情况,即A
      A × B × C = { ( a , b , c ) ∣ a ∈ A , b ∈ B , c ∈ C } A \times B \times C=\{(a,b,c)|a \in A, b \in B, c \in C\} A×B×C={(a,b,c)aA,bB,cC}
    • A n A^n An表示 n ( n ≥ 1 ) n(n \ge 1) n(n1)个集合 A A A的笛卡尔积,并规定 A 0 = ϕ A^0=\phi A0=ϕ
  • 二元关系:对于任意集合A和B,称其笛卡尔积的任意子集(即 R ⊆ A × B R \subseteq A \times B RA×B)为集合A和B上的二元关系,简称关系。若 A = B A=B A=B,则称集合R为集合A上的二元关系。
    • 对于集合A和B上的关系R,我们称集合A是关系R的前域,集合B是关系R的后域。
    • C = { a ∣ a ∈ A , 存 在 b ∈ B , 使 得 ( a , b ) ∈ R } C=\{a|a \in A, 存在b \in B,使得(a,b) \in R\} C={aaA,bB使(a,b)R}为关系R的定义域,记为 d o m ( R ) dom(R) dom(R),例如 A = { 1 , 2 } , B = { a , b } , R = { { 1 , a } , { 2 , b } } A=\{1,2\},B=\{a,b\},R=\{\{1,a\},\{2,b\}\} A={1,2},B={a,b},R={{1,a},{2,b}},那么定义域为 { 1 , 2 } \{1,2\} {1,2}
    • D = { b ∣ b ∈ B , 存 在 a ∈ A , 使 得 ( a , b ) ∈ R } D=\{b|b \in B, 存在a \in A,使得(a,b) \in R\} D={bbB,aA使(a,b)R}为关系R的值域,记为 r a n ( R ) ran(R) ran(R),在上例中值域为 { a , b } \{a,b\} {a,b}
    • f l d ( R ) = d o m ( R ) ∪ r a n ( R ) fld(R)=dom(R) \cup ran(R) fld(R)=dom(R)ran(R)为关系R的域
  • 函数:函数是一种特殊的关系,即对于A中的两个相等的值 x = y x=y x=y,那么必定有 R ( x ) = R ( y ) R(x)=R(y) R(x)=R(y),也就是说,函数是种一对一的映射
    • 全函数:对于定义域中的所有值都有映射的函数,即 d o m ( F ) = A dom(F)=A dom(F)=A
    • 偏函数:定义域中的某些值不存在映射
  • 等价关系:若集合A上的二元关系R满足,则称R为集合A上的等价关系
    1. 自反性:对于任意 x ∈ A x \in A xA,有 ( x , x ) ∈ R (x,x) \in R (x,x)R
    2. 对称性:对于任意 x , y ∈ A x,y \in A x,yA,若 ( x , y ) ∈ R (x,y) \in R (x,y)R,则 ( y , x ) ∈ R (y,x) \in R (y,x)R
    3. 传递性:对于任意 x , y , z ∈ A x,y,z \in A x,y,zA,若 ( x , y ) ∈ R 且 ( y , z ) ∈ R (x,y) \in R且(y,z) \in R (x,y)R(y,z)R,则 ( x , z ) ∈ R (x,z) \in R (x,z)R
  • 等价元素:若R是集合A上的等价关系,且 ( a , b ) ∈ R (a,b) \in R (a,b)R,则称元素a和b等价,记作 a ∼ b a \sim b ab
  • 等价类:集合A中与元素a等价的所有元素组成的集合,称为a由关系R生成的等价类,记作
    [ a ] R = { x ∣ x ∈ A 且 x ∼ a } [a]_R=\{x|x \in A且x \sim a\} [a]R={xxAxa}
    例如整数中模二相等的等价类, R = Z × Z R=Z \times Z R=Z×Z,其中 Z Z Z为整数集合,那么 [ 0 ] R = { . . . , − 2 , 0 , 2 , . . . } [0]_R=\{...,-2,0,2,...\} [0]R={...,2,0,2,...}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值