subspace就是类似于 在space之下的linear subspace, 是可以用向量进行任意的linear combination的(scalar multiplication,还有addition)。我们常见的需要知道possible subspaces of R^2 R^3.
每个span也是subspace(因为也是向量的线性组合)
basis就有点像,需要用“最少的”向量组成一个span,来到达space中任何vector,这里,我们就需要掌握linear independence的概念了。
判定一个basis我们既需要知道是否span,也需要知道是不是set由linearly indendent的vectors所组成。同样,我们可以判定一个set是不是能够form a basis for 一个空间。
subspace这个范围要比span大(任何span都是subspace),span呢,要比basis大,basis有着linear independence的加持(任何basis也都是span也自然都是subspace)。