引言:关于B站上3Blue1Brown的线性代数的本质笔记

        写这篇笔记犹豫了好久,因为毕竟是纯英文讲解,虽然有字幕,但是对我而言还是感觉有难度的。本人是一个刚刚考上一所普通二本计算机专业的学生,因为在学习课程《工程数学-矩阵论》需要用到线性代数,但是自己数学一般般也忘记的差不多了,所以想写一篇笔记,一方面做笔记,另一方面希望和大家探讨一下这门课程。我也看到有其他人去写,结合自己的情况还是想自己去写一些笔记和理解,希望能有所获,如果有理解错误或者不到位的地方希望大家能够指出。

                                                                        引言

        引言部分个人认为是很重要的,只有了解清楚了这么课究竟是干什么的,意义何在,才能使得大家学习的动力十足,不会很迷茫。 下面正文开始:               

        尽管一批教授和教科书编者用关于矩阵的荒唐至极的计算内容掩盖了线性代数的简明性,但是鲜有与之相较更为初等的理论。线性代数是学习任何技术学科都需要掌握的科目之一。(可能需要用到的学科如下图)

对于初次学习线性代数的学生往往对这一科目的理解很肤浅,学生在教室中学到的可能是如何进行各种各样的计算,比如矩阵乘法、行列式、叉积(其中用到了行列式)、或者特征值。(这点是感同身受,下面四张图对应乘法、行列式、叉积、特征值)。

但是学习后的结果很可能是学生并非真正理解为什么矩阵乘法要如此定义,为什么叉积和行列式有关联、又或者特征值代表了什么?大部分时候,学生对矩阵的数值操作驾轻就熟,但对于潜在的几何直观少之又少。在数值水平和几何水平上理解线性代数有着根本性的差异。它们各有千秋,但粗略的讲,几何水平的理解能让你判断出解决特定问题需要用什么样的工具,感受到它为什么有用,以及如何解决最终结果。数值水平的理解能让你顺利应用这些工具。假如你在学习线性代数时,没有几何上的直观理解作为坚实基础,问题可能暂时不会浮出水面,但当你在你的研究领域中继续钻研时,它就会显露出来,不管是计算机科学、工程学、统计学、经济学还是数学本身,这个道理是一致的。当你坐在教室里,或者你开始从事一项工作,都需要你通晓线性代数知识。你的教授或者同事所作的就如同魔法一般,他们很快就知道应该使用什么方法,以及答案大致是什么样子的。如果你猜测的是他们处理的是杂乱无章的数据,你可能还会以为他们有什么奇特的计算方法。

其实线性代数有许多直观的理解,而且是可视化的直观理解,线性代数中计算和可视化直观理解之间的联系往往是相当直接的,当你消化了这些内容,真正理解了几何直观和数值计算的关系,这门科目的细节和它在实际生活中的应用就会开始显得合情合理。当然,看完这些不可能直接就学会线性代数,但对于这个科目而言,你能做的是形成正确的几何直观,以便你在接下来的学习中收获硕果累累。在阅读同时多停下来思考思考,因为学习往往就在此刻发生,你觉得呢?一下就是接下来学的每一节笔记了,我会在后面持续更新。

1、向量究竟是什么?

2、向量的线性组合、张成的空间与基

3、线性变换与矩阵

4、线性变换符合与矩阵乘法

5、行列式

6、逆矩阵、列空间与零空间

7、点积与叉积

8、基变换

9、特征向量与特征值

10、抽象向量空间

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值