【论文阅读】Harnessing the Power of LLM to Support Binary Taint Analysis

在这里插入图片描述

一段话总结

本文提出 LATTE(LLM-Powered Binary Taint Analyzer),这是首个利用大语言模型(LLM)进行静态二进制污点分析的技术。它克服了传统污点分析依赖人工定义规则的局限,通过结合 LLM 的代码理解能力实现自动化。LATTE 先预处理二进制文件,识别漏洞目标和外部输入源,生成危险流,再构建提示序列与 LLM 交互进行漏洞检测。评估显示,LATTE 在标准数据集和真实固件上的漏洞检测准确率高、稳定性好、效率可接受,优于 Emtaint、Arbiter 等现有技术,还发现了 37 个新漏洞,其中 10 个被分配了 CVE 编号 ,为二进制程序漏洞分析开辟了新方向。

在这里插入图片描述

详细总结

  1. 研究背景
    • 软件测试与漏洞检测现状:软件测试是保证软件质量的主要方法,但无法确保无漏洞。二进制漏洞可能被利用,引发网络攻击,第三方安全审计及静态二进制污点分析成为保障软件安全的重要手段。
    • 静态二进制污点分析概述:该分析通过识别污点源、传播污点标签、检查漏洞点来检测漏洞,然而其部分流程依赖人工,规则设计复杂且易出错。
    • LLMs的应用潜力:LLMs在代码理解方面有优势,如代码生成和总结,但应用于二进制漏洞检测存在提示工程和代码上下文编码等挑战。
  2. LATTE设计
    • 整体思路:结合LLMs与污点分析概念,通过代码切片驱动的提示序列构建,实现二进制漏洞检测。
    • 工作流程
      • 预处理:对二进制文件进行反汇编和反编译,恢复代码结构。
      • 危险流生成:利用LLM识别漏洞目标和外部输入源,通过向后切片和匹配生成危险流。
      • 提示序列构建:根据危险流设计提示模板,与LLM交互进行漏洞检测。

在这里插入图片描述

  1. LATTE评估
    • 评估设置
      • 基准测试:使用Juliet Test Suite和Karonte数据集,去除调试信息和内部数据源
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

衬衫chenshan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值