Linux基础环境搭建(CentOS7)- 安装Hadoop

Linux基础环境搭建(CentOS7)-安装Hadoop


大家注意以下的环境搭建版本号,如果版本不匹配有可能出现问题!

Linux基础环境搭建(CentOS7)- 虚拟机准备
Linux基础环境搭建(CentOS7)- 安装JDK
Linux基础环境搭建(CentOS7)- 安装Hadoop
Linux基础环境搭建(CentOS7)- 安装Zookeeper
Linux基础环境搭建(CentOS7)- 安装Kafka
Linux基础环境搭建(CentOS7)- 安装HBase
Linux基础环境搭建(CentOS7)- 安装Scala和Spark
Linux基础环境搭建(CentOS7)- 安装Mysql和Hive
Linux基础环境搭建(CentOS7)- 安装Sqoop
Linux基础环境搭建(CentOS7)- 安装Flume


一、Hadoop下载及安装

Hadoop在大数据技术体系中的地位至关重要,Hadoop是大数据技术的基础,对Hadoop基础知识的掌握的扎实程度,会决定在大数据技术道路上走多远。
在这里插入图片描述

Hadoop的下载

Hadoop下载链接:https://archive.apache.org/dist/hadoop/common/hadoop-2.7.3/
在这里插入图片描述

将下载的安装包通过Xftp传输到Linux虚拟机/opt/software/中

Hadoop的安装

创建工作路径//usr/hadoop,下载hadoop安装包到/opt/software中,然后解压至工作路径。

mkdir /usr/hadoop		#首先在根目录下建立工作路径/usr/hadoop
cd /opt/software		#进入安装包的文件夹
tar -zxvf hadoop-2.7.3.tar.gz -C /usr/hadoop

二、配置Hadoop环境变量(3台)

vim /etc/profile

添加如下内容:

 #HADOOP
export HADOOP_HOME=/usr/hadoop/hadoop-2.7.3
export CLASSPATH=$CLASSPATH:$HADOOP_HOME/lib
export PATH=$PATH:$HADOOP_HOME/bin

在这里插入图片描述

source /etc/profile		#使profile生效

三、配置hadoop各组件(配置文件建议直接复制粘贴,防止搞错)

hadoop的各个组件的都是使用XML进行配置,这些文件存放在hadoop的etc/hadoop目录下。

1.hadoop-env.sh

cd $HADOOP_HOME/etc/hadoop
vim hadoop-env.sh

输入以下内容,修改java环境变量:

export JAVA_HOME=/usr/java/jdk1.8.0_171

在这里插入图片描述
键入“Esc”,退出编辑模式,使用命令“:wq”进行保存退出。

2.core-site.xml

vim core-site.xml

内容如下:

<configuration>
<property>
  <name>fs.default.name</name>
   <value>hdfs://master:9000</value>
</property>
<property>
  <name>hadoop.tmp.dir</name>
   <value>/usr/hadoop/hadoop-2.7.3/hdfs/tmp</value>
<description>A base for other temporary directories.</description>
</property>
<property>
  <name>io.file.buffer.size</name>
   <value>131072</value>
</property>
<property>
  <name>fs.checkpoint.period</name>
   <value>60</value>
</property>
<property>
  <name>fs.checkpoint.size</name>
   <value>67108864</value>
</property>
</configuration>

master:在主节点的ip或者映射名。

9000:主节点和从节点配置的端口都是9000。
在这里插入图片描述

3.mapred-site.xml

hadoop是没有这个文件的,需要将mapred-site.xml.template样本文件复制为mapred-site.xml,对其进行编辑:

cp mapred-site.xml.template mapred-site.xml
vim mapred-site.xml

在这里插入图片描述
在这里插入图片描述
内容如下:

<configuration>
<property>
<!--指定Mapreduce运行在yarn上-->
   <name>mapreduce.framework.name</name>
   <value>yarn</value>
 </property>
</configuration>

4.yarn-site.xml

vim yarn-site.xml

在这里插入图片描述
内容如下:

<configuration>
<!-- 指定ResourceManager的地址-->
<property>
 <name>yarn.resourcemanager.address</name>
   <value>master:18040</value>
 </property>
 <property>
   <name>yarn.resourcemanager.scheduler.address</name>
   <value>master:18030</value>
 </property>
 <property>
   <name>yarn.resourcemanager.webapp.address</name>
   <value>master:18088</value>
 </property>
 <property>
   <name>yarn.resourcemanager.resource-tracker.address</name>
   <value>master:18025</value>
 </property>
 <property>
  <name>yarn.resourcemanager.admin.address</name>
  <value>master:18141</value>
 </property>
<!-- 指定reducer获取数据的方式-->
 <property>
  <name>yarn.nodemanager.aux-services</name>
  <value>mapreduce_shuffle</value>
 </property>
 <property>
  <name>yarn.nodemanager.auxservices.mapreduce.shuffle.class</name>
  <value>org.apache.hadoop.mapred.ShuffleHandler</value>
 </property>
</configuration>

5.hdfs.site.xml

vim hdfs-site.xml

在这里插入图片描述
内容如下:

<configuration>
<property>
 <name>dfs.replication</name>
   <value>2</value>
 </property>
 <property>
   <name>dfs.namenode.name.dir</name>
   <value>file:/usr/hadoop/hadoop-2.7.3/hdfs/name</value>
   <final>true</final>
</property>
 <property>
   <name>dfs.datanode.data.dir</name>
   <value>file:/usr/hadoop/hadoop-2.7.3/hdfs/data</value>
   <final>true</final>
 </property>
 <property>
  <name>dfs.namenode.secondary.http-address</name>
   <value>master:9001</value>
 </property>
 <property>
   <name>dfs.webhdfs.enabled</name>
   <value>true</value>
 </property>
 <property>
   <name>dfs.permissions</name>
   <value>false</value>
 </property>
</configuration>

dfs.replication:因为hadoop是具有可靠性的,它会备份多个文本,这里value就是指备份的数量(小于等于从节点的数量)。

6.slaves & master

编写slaves文件,添加子节点slave1和slave2;

vim slaves

在这里插入图片描述

编写master文件,添加主节点master。

vim master

在这里插入图片描述

四、同步其他虚拟机

分发profile文件,hadoop文件到slave1和slave2节点上

scp -r /etc/profile root@slave1:/etc/profile	#将环境变量profile文件分发到slave1节点
scp -r /etc/profile root@slave2:/etc/profile	#将环境变量profile文件分发到slave2节点
scp -r /usr/hadoop root@slave1:/usr/			#将hadoop文件分发到slave1节点
scp -r /usr/hadoop root@slave2:/usr/			#将hadoop文件分发到slave2节点

生效两个从节点的环境变量

source /etc/profile		#slave1和slave2都要执行

五、格式化hadoop (仅在master中进行操作)

首先查看jps是否启动hadoop,若无才可格式化

hadoop namenode -format

当出现“Exiting with status 0”的时候,表明格式化成功。
在这里插入图片描述

六、开启hadoop集群

仅在master主机上开启操作命令。它会带起从节点的启动。(仅在master中进行操作)

cd /usr/hadoop/hadoop-2.7.3		#回到hadoop目录
sbin/start-all.sh		#主节点开启服务

master
在这里插入图片描述
slave1
在这里插入图片描述
slave2
在这里插入图片描述

注意各个节点的进程区别!
如果各个节点的进程如上,那么你的hadoop完全分布式搭建完成!

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 15
    点赞
  • 52
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
### 回答1: 如果要在本地配置 Hadoop 的开发环境,你需要安装 Hadoop 并创建一个伪分布式集群。 安装 Hadoop 的方法取决于你使用的操作系统。你可以通过以下两种方式之一来安装 Hadoop: 1. 使用软件包管理器(例如 apt-get 或 yum): - 在 Ubuntu 中,使用以下命令安装 Hadoop: ``` sudo apt-get install hadoop ``` - 在 CentOS 中,使用以下命令安装 Hadoop: ``` sudo yum install hadoop ``` 2. 从源代码安装 Hadoop: - 下载 Hadoop 源代码: ``` wget http://www.apache.org/dyn/closer.cgi/hadoop/common/hadoop-3.3.0/hadoop-3.3.0.tar.gz ``` - 解压缩 Hadoop 源代码: ``` tar -xzvf hadoop-3.3.0.tar.gz ``` 接下来,你需要创建一个伪分布式集群,这意味着你在单个机器上运行 Hadoop,但是其表现得像一个分布式集群。 首先,你需要配置 Hadoop 的配置文件(例如 hadoop-env.sh),然后启动 Hadoop。 在完成这些步骤后,你就可以使用 Hadoop 了! ### 回答2: Hadoop大数据处理的常用工具之一,其分布式存储和处理数据的特点,使其越来越受到关注。而为了使用Hadoop,我们需要先配置好开发环境,包括Hadoop安装和伪分布式集群搭建。 Hadoop安装Hadoop是基于Java开发的,所以首先需要安装Java。建议安装Java8或以上版本,并确保JAVA_HOME环境变量已经配置好。 接下来,需要下载Hadoop安装包并解压缩。建议使用Apache官方的二进制发行版本,也可以选择Cloudera或Hortonworks等第三方发行版本。解压后,在Hadoop的根目录下,需要进行一些配置。 伪分布式集群搭建: 伪分布式集群是在单台机器上搭建的模拟集群,可以方便地进行Hadoop的学习和开发。要搭建伪分布式集群,需要进行如下配置: 1. 配置Hadoop的配置文件:修改Hadoop的配置文件hadoop-env.sh,并将HADOOP_CONF_DIR、HADOOP_MAPRED_HOME、HADOOP_COMMON_HOME、HADOOP_HDFS_HOME环境变量设置为Hadoop安装目录。 2. 配置HDFS文件系统:在Hadoop的conf目录下,创建一个新的文件夹hadoop_data,并在该目录下创建三个子目录:namenode、datanode和tmp。其中,namenode和datanode分别是HDFS的主节点和从节点,而tmp目录是用来存放临时文件的。 3. 启动Hadoop:通过执行start-all.sh脚本,可以启动所有的Hadoop进程。如果一切正常,就可以通过http://localhost:50070访问HDFS的文件浏览器,和http://localhost:8088访问资源管理器,查看Hadoop的运行状态。 这样,伪分布式的Hadoop集群就搭建完成了。通过这个集群,可以进行各种Hadoop的开发操作,比如MapReduce程序的编写和执行等。当然,在实际应用中,还需要对Hadoop进行更加严格和复杂的配置和管理。 ### 回答3: Hadoop是一个开源的分布式计算框架,它能够对大规模的数据进行存储和处理,也因此得到了广泛的应用。如今Hadoop已成为大数据生态系统中的一个重要组成部分。为了能够使用Hadoop,我们需要先配置好开发环境。下面就让我们了解一下第二关:配置开发环境 - Hadoop安装与伪分布式集群搭建。 首先,我们需要先下载Hadoop,并安装Java环境。Hadoop支持多个版本,可以根据自己的需要进行选择。安装Java环境的方法也很简单,只需要到官网上下载对应的JDK,然后按照提示进行安装即可。 接下来,我们需要配置Hadoop的环境变量。在Linux系统下,直接在.bashrc文件中添加以下代码即可: export HADOOP_HOME=/path/to/hadoop export PATH=$PATH:$HADOOP_HOME/bin export PATH=$PATH:$HADOOP_HOME/sbin 其中,/path/to/hadoop改为实际的Hadoop安装路径。 当环境变量配置好后,我们就可以开始配置Hadoop的伪分布式集群。 首先,我们需要编辑hadoop-env.sh文件,将JAVA_HOME设置为我们刚刚安装的JDK路径。 然后,我们需要配置core-site.xml文件。在该文件中,我们需要指定Hadoop所使用的文件系统类型,这里我们使用HDFS。同时,我们还需要指定Hadoop的namenode,即Hadoop的主节点。将以下代码添加到core-site.xml文件中: <configuration> <property> <name>fs.defaultFS</name> <value>hdfs://localhost:9000</value> </property> </configuration> 其中,localhost改为实际的主机名。 接下来,我们需要配置hdfs-site.xml文件。该文件用于配置Hadoop分布式文件系统(HDFS)。将以下代码添加到hdfs-site.xml文件中: <configuration> <property> <name>dfs.replication</name> <value>1</value> </property> <property> <name>dfs.namenode.name.dir</name> <value>/path/to/hadoop/data/nameNode</value> </property> <property> <name>dfs.datanode.data.dir</name> <value>/path/to/hadoop/data/dataNode</value> </property> </configuration> 其中,/path/to/hadoop/data/nameNode和/path/to/hadoop/data/dataNode改为实际的数据存储路径。 最后,我们需要配置mapred-site.xml文件。该文件用于配置MapReduce计算框架。将以下代码添加到mapred-site.xml文件中: <configuration> <property> <name>mapreduce.framework.name</name> <value>yarn</value> </property> </configuration> 以上就是配置Hadoop伪分布式集群的所有步骤。我们可以通过启动命令,启动Hadoop集群。运行$HADOOP_HOME/sbin/start-all.sh即可启动Hadoop伪分布式集群。最后,我们可以通过JPS命令查看Hadoop的各个组件是否启动成功。 总之,配置好Hadoop的开发环境后,我们才能更好地使用Hadoop进行数据处理。通过以上步骤,我们可以轻松搭建Hadoop伪分布式集群,并开始进行数据处理工作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

John Zhuang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值