机器学习之手写阿拉伯数字识别

样本:github.com/mc6666/Kera…

 

markdown

代码解读

复制代码

# 手写阿拉伯数字识别 本项目将使用 TensorFlow 和 Keras 构建一个卷积神经网络(CNN)模型来识别手写阿拉伯数字。以下是各个步骤的详细说明。

 

python

代码解读

复制代码

# 导入必要的库 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.preprocessing.image import ImageDataGenerator from skimage import io from skimage.transform import resize # 设置中文字体 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False

 

markdown

代码解读

复制代码

## 步骤1:加载 MNIST 手写阿拉伯数字数据 我们将使用 Keras 提供的 MNIST 数据集,它包含了 60000 个训练样本和 10000 个测试样本,每个样本是一个 28x28 像素的灰度图像。

 

python

代码解读

复制代码

mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data()

 

markdown

代码解读

复制代码

## 步骤2:数据清理 此步骤无需进行,因为 MNIST 数据集已经过清理和处理。

 

m

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值