markdown
代码解读
复制代码
# 手写阿拉伯数字识别 本项目将使用 TensorFlow 和 Keras 构建一个卷积神经网络(CNN)模型来识别手写阿拉伯数字。以下是各个步骤的详细说明。
python
代码解读
复制代码
# 导入必要的库 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt from tensorflow.keras.preprocessing.image import ImageDataGenerator from skimage import io from skimage.transform import resize # 设置中文字体 plt.rcParams['font.sans-serif'] = ['SimHei'] plt.rcParams['axes.unicode_minus'] = False
markdown
代码解读
复制代码
## 步骤1:加载 MNIST 手写阿拉伯数字数据 我们将使用 Keras 提供的 MNIST 数据集,它包含了 60000 个训练样本和 10000 个测试样本,每个样本是一个 28x28 像素的灰度图像。
python
代码解读
复制代码
mnist = tf.keras.datasets.mnist (x_train, y_train), (x_test, y_test) = mnist.load_data()
markdown
代码解读
复制代码
## 步骤2:数据清理 此步骤无需进行,因为 MNIST 数据集已经过清理和处理。
m

最低0.47元/天 解锁文章
297

被折叠的 条评论
为什么被折叠?



