- 博客(21)
- 收藏
- 关注
原创 byobu安装记录(CentOS)
用记事本打开byobu解压缩的文件夹中的configure.ac文件,确保有如下的语句:AM_INIT_AUTOMAKE([foreign]),如果没有,请添加它。如果 Automake 已安装,这个命令将输出安装的 Automake 版本的信息。如果没有安装,它会提示 package。从以上链接下载安装包,安装包的名字为byobu-master.zip,随后用Xftp上传到服务器。这样做会创建空的占位文件,并避免 automake 报错。为确定以上环境变量配置完成,使用以上代码检查。
2024-10-01 16:44:57 884
原创 多尺度融合——拉普拉斯金字塔融合
图像金字塔是图像多尺度表达的一种,高斯金字塔和拉普拉斯金字塔是常见的两种金字塔类型。拉普拉斯金字塔融合,是将图像建立一个拉普拉斯金字塔,金字塔的每一层都包含图像的不同频段,分开不同频段对图像进行融合。拉普拉斯金字塔:拉普拉斯金字塔的每一层都是高斯分差图像,i层图像的高频细节信息会在产生i+1层高斯金字塔图像时丢失,所以(i层图像)-(i+1层图像上采样后卷积)可以保留丢失的高频信息。高斯金字塔(reduce):先高斯滤波模糊,再下采样;下采样会使得图像丢失信息。
2024-03-30 22:39:17 690
原创 引导滤波 · Retinex
引导滤波是一种边缘保留滤波方式,当引导图像为图像本身时,能够实现保边滤波。假设引导图像与滤波输出图像之间为线性关系,因此能够由引导图明确图像的边缘和平坦区域,从而完成平滑区域,保持边缘的引导滤波效果。高斯滤波的核函数与待处理图像无关,即高斯滤波对任何图像的操作相同,高斯滤波的权重与中心像素点的距离有关,像素距离中心像素点越近,权重越大,反之,权重越小。同号,因此在引导滤波器中,在平坦或噪声区域权重较大,平滑效果明显,在边缘部分权重较小,平滑效果较弱,能够起到保持边缘的效果。异号,在平坦或噪声区域,
2024-03-25 16:58:03 735
原创 【文献阅读】Joint Contrast Enhancement and Exposure Fusion for Real-World Image Dehazing
文章亮点:CEEF:Joint Contrast Enhancement and Exposure Fusion for Real-World Image Dehazing
2023-11-29 22:44:53 615 1
原创 【文献阅读】Underwater Image Enhancement via Minimal Color Loss and Locally Adaptive Contrast Enhancement
这篇文章提出了一种局部自适应颜色校正(LACC)的方法,主要包括两部分,其一是根据最小颜色损失原则获得颜色转移图像,其二是通过最大衰减图像(映射)引导融合得到颜色校正图像,实现对颜色和细节的局部调整。文章提出了一种基于最小颜色损失及局部自适应对比度增强(MLLE)实现水下图像增强的方法,单幅图像的处理过程根据下图可以分为局部自适应颜色校正及局部自适应对比度增强两个过程,下面是对这两个过程的一些理解。即总颜色损失由三个通道的平均像素值决定。
2023-11-15 23:41:18 1008 6
原创 conda环境安装scipy及scikit-image
最近的一些工作要用到scikit-image包,pip一直安装不成功,就用conda环境安装,简单记录下安装的过程。看起来 Conda 渠道配置包含了一些镜像源以及一些特定的渠道。
2023-11-13 17:26:08 1563
原创 [论文阅读&代码]DehazeNet: An End-to-End System for Single Image Haze Removal
现有的单图像去雾方法使用很多约束和先验来获得去雾结果,去雾的关键是根据输入的雾图获得得到介质传输图(medium transmission map)这篇文章提出了一种端到端的可训练的去雾系统—Dehaze Net,用于估计介质传输图Dehaze Net中,输入为雾图,输出为介质传输图,随后通过大气散射模型恢复无雾图像。Dehaze Net网络采用卷积神经网络深度架构,该网络的每层都经过特殊的设计以应用现有的假设和先验。Maxout单元用于特征提取,几乎可以产生大多数雾相关的特征。
2023-04-12 11:13:36 3167 3
原创 【卷积神经网络模型】LeNet\AlexNet\VGG\GoogleNet\ResNet
AlexNet在全连接层的前两层使用了dropout,使得一部分神经元随机失活,减少了模型的过拟合,使用了Relu作为激活函数,原来使用的sigmoid在层数较多时会出现梯度消失的问题(sigmoid函数的导数小于1,损失函数反向传播时可能会出现0)ResNet的最终输出结果等于输入数据经过两个卷积层之后的输出加上输入数据x的恒等映射,加入恒等映射不会给整个网络增加额外的参数及计算量,却能够加快模型的训练速度,提升模型的效果,模型没有出现退化问题,性能还有了提升。输入数据为高度宽度均为32的单通道图像。
2023-04-02 22:02:22 212
原创 【深度学习·Pytorch笔记】卷积神经网络结构
池化层的输入数据是经过卷积层之后生成的特征图。线性回归问题的使用场景是根据已获得一部分对应关系的原始数据,得到一个连续的线性的映射关系,使用原始数据不断对建立的初始模型进行训练,使得该模型能够对输入的新数据进行准确的预测。卷积层通过卷积核提取特征,,这个过程就相当于对输入数据加权,卷积核的深度与输入图像色彩通道保持一致,如果输入图像是三通道,则卷积核的深度为3,输入为单通道,则卷积核深度为1。same:在输入图像的最外层加上指定层数的值全为零的像素边界,使得输入图像的全部像素都能够被滑动的卷积窗口捕捉。
2023-04-02 13:30:04 232
原创 Python-列表&元组&字典
print_value = student_age.get('Candy', 'This student is not exist.'),get()共有两个参数,第一个参数为指定的键,第二个参数为指定键不存在时返回的值(可选)。确定使用多行来定义字典,在输入左花括号后按回车,在下一行缩进四个空格,指定第一个键值对,加一个逗号,再按回车,缩进四个字符,确定键值对……set(字典.values()):找出字典中的值,去除重复项,其结果为不重复的列表。range(a:b) 生成a开始,b-1停止的数值列表。
2023-03-30 17:40:35 111
原创 卷积神经网络模型LeNet-model
LeNet是最早的卷积神经网络之一,最早被用于手写数字识别,其结构如下,共有包括输入层在内的8层网络结构,两层卷积,两层池化(下采样),以及三层全连接网络。
2023-03-15 14:26:30 236
原创 Pytorch 及Pytorch环境下Open CV安装记录
可以观察到前面从(base)变为(pytorch),表示已经切换到pytorch房间。通过conda 命令创建pytorch虚拟房间,方便对Pytorch进行管理。输入import pytorch一直提示错误,所以打算把pytorch重装。打开Anaconda prompt,首先检查conda中的虚拟环境。,按照CUDA型号等计算机型号选择pytorch版本。NVIDIA控制面板-系统信息-组件-3D设置。观察到有创建pytorch虚拟环境。删除pytorch 虚拟环境。,具体过程见链接博客。
2023-02-28 09:58:08 1989 3
原创 Python操作入门
在表示切片的方括号内指定第三个值,可以确定元素提取间隔,例如[0:10:2],0为切片起始索引,10(9)为切片结束索引,切片间隔为2,对numbers_4列表进行切片,输出应为20-11这十个数中的偶数。对新组成的列表numbers_4进行升序排列,使用了sort()函数,当进行降序排列时,sort()括号中使用reverse=True即可。
2022-11-06 10:45:40 267
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人