【统计学习方法】第3章 k邻近法

k k k 邻近法(k-nearest neighbor,k-NN)是一种基本分类与回归方法,这里只讨论分类问题中的 k k k 邻近法。

3.1 k 邻近算法

给定一个训练数据,对新的输入实例,在训练数据集中找到与该实例最邻近的 k k k 个实例,这 k k k 个实例的多数属于某个类,就把该输入实例分为这个类。

k k k 邻近法的特殊情况时 k = 1 k=1 k=1 的情形,称为最邻近算法。对于输入的实例点(特征向量) x x x,最邻近法将训练集数据中与 x x x 最邻近点的类作为 x x x 的类。 k k k 邻近法没有显式的学习过程。

3.2 k 邻近模型

k k k 邻近法使用的模型实际上对应于对特征空间的划分。模型由三个基本要素——距离度量、 k k k 值的选择和分类决策规则决定。

3.2.1 距离度量

特征空间中两个实例点的距离是两个实例点相似程度的反映。 k k k 近邻模型的特征空间一般是 n n n 维实数向量空间 R n \mathbb{R}^n Rn。使用的距离是欧式距离,但也可以是其他距离。

设特征空间 X \mathcal{X} X n n n 维实数向量空间 R n \mathbb{R}^n Rn x i , x j ∈ X x_i,x_j\in\mathcal{X} xi,xjX x i = ( x i ( 1 ) , x i ( 2 ) , ⋯   , x i ( n ) ) T x_i=(x_i^{(1)},x_i^{(2)},\cdots,x_i^{(n)})^T xi=(xi(1),xi(2),,xi(n))T x j = ( x j ( 1 ) , x j ( 2 ) , ⋯   , x j ( n ) ) T x_j=(x_j^{(1)},x_j^{(2)},\cdots,x_j^{(n)})^T xj=(xj(1),xj(2),,xj(n))T x i , x j x_i,x_j xi,xj L p L_p Lp 距离定义为

L p ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ p ) 1 p L_p(x_i,x_j)=\left(\sum_{l=1}^n\lvert x_i^{(l)}-x_j^{(l)}\rvert^p\right)^{\frac{1}{p}} Lp(xi,xj)=(l=1nxi(l)xj(l)p)p1

这里 p ⩾ 1 p\geqslant1 p1。当 p = 2 p=2 p=2 时,称为欧式距离(Euclidean distance),即

L 2 ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ 2 ) 1 2 L_2(x_i,x_j)=\left(\sum_{l=1}^n\lvert x_i^{(l)}-x_j^{(l)}\rvert^2\right)^{\frac{1}{2}} L2(xi,xj)=(l=1nxi(l)xj(l)2)21

p = 1 p=1 p=1 时,称为曼哈顿距离(Manhattan distance),即

L 1 ( x i , x j ) = ( ∑ l = 1 n ∣ x i ( l ) − x j ( l ) ∣ ) L_1(x_i,x_j)=\left(\sum_{l=1}^n\lvert x_i^{(l)}-x_j^{(l)}\rvert\right) L1(xi,xj)=(l=1nxi(l)xj(l))

p = ∞ p=\infin p= 时,它是各个坐标距离的最大值,即

L ∞ ( x i , x j ) = max ⁡ l ∣ x i ( l ) − x j ( l ) ∣ L_{\infin}(x_i,x_j)=\max_{l}\lvert x_i^{(l)}-x_j^{(l)}\rvert L(xi,xj)=lmaxxi(l)xj(l)

3.2.2 k 值选择

k k k 值的选择会对 k k k 近邻法的结果产生重大影响。

如果选择较小的 k k k 值,就相当于用较小的领域中的训练实例进行预测,“学习”的近似误差(approximation error)会减小,只有输入实例较近的(相似的)训练实例才会对预测结果起作用。但缺点是“学习”的估计误差(estimation error)会增大,预测结果会对近邻的实例点非常敏感。如果近邻的实例点恰好是噪声,预测就会出错。换句话说, k k k 值的减小就意味着整体模型变得复杂,容易发生过拟合。

如果选择较大的 k k k 值,就相当于用较大领域中的训练实例进行预测。其有点是可以减小学习的估计误差。但缺点是学习的近邻误差会增大。这时与输入实例较远的(不相似的)训练实例也会对预测起作用,使预测发生错误。 k k k 值的增大就意味着整体的模型变得简单。

在应用中, k k k 值一般取一个比较小的数值。通常采用交叉验证法来选取最优的 k k k 值。

3.2.3 分类决策规则

k k k 近邻法的分类决策规则往往是多数表决,即由输入实例的 k k k 个近邻的训练实例中的多数类决定输入实例的类。

3.3 k 邻近法的实现:kd 树

k k k 近邻法最简单的实现方法是线性扫描(linear scan)。这时计算输入实例与每一个训练实例的距离。当训练集很大时,计算非常耗时,这种方法是不可行的。

为了提高 k k k 近邻搜索的效率,可以考虑使用特殊的结构存储训练数据,以减少计算距离的次数。

3.3.1 构造 kd 树

输入 k k k 维空间数据集 T = { x 1 , x 2 , ⋯   , x N } T=\{x_1,x_2,\cdots,x_N\} T={x1,x2,,xN},其中 x i = ( x i ( 1 ) , x i ( 2 ) , ⋯   , x i ( k ) ) T , i = 1 , 2 , ⋯   , N x_i=(x_i^{(1)},x_i^{(2)},\cdots,x_i^{(k)})^T,i=1,2,\cdots,N xi=(xi(1),xi(2),,xi(k))T,i=1,2,,N

输出:kd 树

  1. 开始:构造根结点,根结点对应于包括 T T T k k k 维空间的超矩形区域。
  2. 重复:对深度为 j j j 的结点,选择 x ( l ) x^{(l)} x(l) 为切分的坐标轴, l = j ( m o d k ) + 1 l=j(modk)+1 l=j(modk)+1,以该结点的区域中所有实例的 x ( l ) x^{(l)} x(l) 坐标的中位数为切分点,将该结点对应的超矩形区域切分为两个子区域。切分由通过切分点并于坐标轴 x ( l ) x^{(l)} x(l) 垂直的超平面实现。
  3. 直到两个子区域没有实例存在时停止,从而形成 kd 树的区域划分。

3.3.2 搜索 kd 数

输入:已构造的 kd 树;目标点 x x x

输出 x x x 的最邻近

  1. 在 kd 树中找出包含目标点 x x x 的叶节点:从根结点出发,递归地向下访问 kd 树。若目标点 x x x 当前维的坐标小于切分点的坐标,则移动到左子结点,否则移动到右子结点,直到子结点为叶结点为止。
  2. 以此结点为“当前最近点”
  3. 递归地向上回退,在每个结点进行以下操作:
    1. 如果该结点保存的实例点比当前最近点距离目标点更近,则以该实例点为“当前最近点”
    2. 当前最近点一定存在于该结点一个子结点对应的区域。检查该子结点的父结点的另一个子结点对应的区域是否有更近的点。具体地,检查另一子结点对应的区域是否与以目标点为球心、以目标点与“当前最近点”的距离为半径的超球体相交。如果相交,可能在另一个子结点对应区域内存在距离目标点更近的点,移动到另一个子结点,接着,递归地进行最邻近搜索;如果不相交,向上回退
  4. 当回退到根结点时,搜索结束。最后的“当前最近点”即为 x x x 的最近邻点。
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值