软件工程经济学第二章作业

软件工程经济学第二章作业

第六题

某软件企业获得10万元的贷款,偿还期为5年,年利率为10%。就下述4种还贷方式,分别计算5年还款总额和还贷额的现值。

1️⃣ 每年末还2万元本金及所欠利息;

金额均以万元为单位,银行利率 i n = 10 % i_n=10\% in=10%

年数n年初所欠金额 S n − 1 S_{n-1} Sn1年利息额 I n = S n − 1 i n I_n=S_{n-1}i_n In=Sn1in年终所欠金额 S n = S n − 1 + I n S_n=S_{n-1}+I_n Sn=Sn1+In偿还本金 U n U_n Un年终付款总额 V n = U n + I n V_n=U_n+I_n Vn=Un+In
11011123
280.88.822.8
360.66.622.6
440.44.422.4
520.22.222.2
∑ \sum 31013

5年还款总额为13万元

还贷额的现值为:
3 ( 1 + 10 % ) + 2.8 ( 1 + 10 % ) 2 + 2.6 ( 1 + 10 % ) 3 + 2.4 ( 1 + 10 % ) 4 + 2.2 ( 1 + 10 % ) 5 ≈ 10 万元 \frac{3}{(1+10\%)}+\frac{2.8}{(1+10\%)^2}+\frac{2.6}{(1+10\%)^3}+\frac{2.4}{(1+10\%)^4}+\frac{2.2}{(1+10\%)^5}\approx 10万元 (1+10%)3+(1+10%)22.8+(1+10%)32.6+(1+10%)42.4+(1+10%)52.210万元
2️⃣ 每年末只还所欠利息,本金在第5年末一次还清;

金额均以万元为单位,银行利率 i n = 10 % i_n=10\% in=10%

年数n年初所欠金额 S n − 1 S_{n-1} Sn1年利息额 I n = S n − 1 i n I_n=S_{n-1}i_n In=Sn1in年终所欠金额 S n = S n − 1 + I n S_n=S_{n-1}+I_n Sn=Sn1+In偿还本金 U n U_n Un年终付款总额 V n = U n + I n V_n=U_n+I_n Vn=Un+In
11011101
21011101
31011101
41011101
5101111011
∑ \sum 51015

5年还款总额为15万元

还贷额的现值为:
1 ( 1 + 10 % ) + 1 ( 1 + 10 % ) 2 + 1 ( 1 + 10 % ) 3 + 1 ( 1 + 10 % ) 4 + 11 ( 1 + 10 % ) 5 ≈ 10 万元 \frac{1}{(1+10\%)}+\frac{1}{(1+10\%)^2}+\frac{1}{(1+10\%)^3}+\frac{1}{(1+10\%)^4}+\frac{11}{(1+10\%)^5}\approx 10万元 (1+10%)1+(1+10%)21+(1+10%)31+(1+10%)41+(1+10%)51110万元
3️⃣ 每年末等额偿还本金和利息;

金额均以万元为单位,银行利率 i n = 10 % i_n=10\% in=10%

年数n年初所欠金额 S n − 1 S_{n-1} Sn1年利息额 I n = S n − 1 i n I_n=S_{n-1}i_n In=Sn1in年终所欠金额 S n = S n − 1 + I n S_n=S_{n-1}+I_n Sn=Sn1+In偿还本金 U n U_n Un年终付款总额 V n = U n + I n V_n=U_n+I_n Vn=Un+In
1101111.642.64
28.360.849.201.802.64
36.560.667.221.982.64
44.580.465.042.182.64
52.400.242.642.402.64
∑ \sum 3.21013.2

5年还款总额为13.2万元

还贷额的现值为:
2.64 ( 1 + 10 % ) + 2.64 ( 1 + 10 % ) 2 + 2.64 ( 1 + 10 % ) 3 + 2.64 ( 1 + 10 % ) 4 + 2.64 ( 1 + 10 % ) 5 ≈ 10 万元 \frac{2.64}{(1+10\%)}+\frac{2.64}{(1+10\%)^2}+\frac{2.64}{(1+10\%)^3}+\frac{2.64}{(1+10\%)^4}+\frac{2.64}{(1+10\%)^5}\approx 10万元 (1+10%)2.64+(1+10%)22.64+(1+10%)32.64+(1+10%)42.64+(1+10%)52.6410万元
4️⃣ 第五年末一次还清本金和利息。

金额均以万元为单位,银行利率 i n = 10 % i_n=10\% in=10%

年数n年初所欠金额 S n − 1 S_{n-1} Sn1年利息额 I n = S n − 1 i n I_n=S_{n-1}i_n In=Sn1in年终所欠金额 S n = S n − 1 + I n S_n=S_{n-1}+I_n Sn=Sn1+In偿还本金 U n U_n Un年终付款总额 V n = U n + I n V_n=U_n+I_n Vn=Un+In
11011100
2111.112.100
312.11.213.300
413.31.314.600
514.61.516.1100016.1
∑ \sum 6.116.1

5年还款总额为16.1万元

还贷额的现值为:
16.1 ( 1 + 10 % ) 5 ≈ 10 万元 \frac{16.1}{(1+10\%)^5}\approx 10万元 (1+10%)516.110万元

第九题

某公司计划7年后购进一台设备,约需投资6万元。为此,该公司决定从今年起每年从税后利润中提取等额年金,以作为专用基金存入行。设银行存款年利率为 5.5%,问该公司应提取多少年金。画出相应的现金流量图。

答:

由题目可知 n = 7 , S 7 = 6 , i = 0.055 n=7,S_7=6,i=0.055 n=7,S7=6,i=0.055,则有
A = S n ⋅ S F F = S 7 i ( 1 + i ) 7 − 1 = 6 0.055 ( 1 + 0.055 ) 7 − 1 = 0.726 万元 A=S_n\cdot SFF=S_7\frac{i}{(1+i)^7-1}=6\frac{0.055}{(1+0.055)^7-1}=0.726万元 A=SnSFF=S7(1+i)71i=6(1+0.055)710.055=0.726万元
所以该公司应该提取0.726万元,现金流量图如下:
在这里插入图片描述

第十三题

某软件企业一年前买了 1 万张面额为 100 元、年利率为 10%(单利)、3 年后到期一次性还本付息国库券。现在有一机会可以购买年利率为 12%、二年期、到期还本付息的无风险企业债券,该企业拟卖掉国库券以购买企业债券,试问该企业可接受的国库券最低出售价格是多少。

答:

(企业债券按照复利)

设该企业可接受的国库券最低出售价格是 p m i n p_{min} pmin元/张,则有
10000 × 100 × ( 1 + 3 × 10 % ) = 10000 × p m i n × ( 1 + 12 % ) 2 解得 p m i n = 103.64 10000\times 100\times(1+3\times 10\%)=10000\times p_{min}\times(1+ 12\%)^2\\ 解得p_{min}=103.64 10000×100×(1+3×10%)=10000×pmin×(1+12%)2解得pmin=103.64
该企业可接受的国库券最低出售价格是103.64元/张

第十四题

某软件项目现有两个设计方案 A 和 A2,为比较这两个设计方案的优劣,该项目主管确定了五个指标 X1、X2、X3、X4、X5,对这五个指标的相对重要性作了两两比较,如表 2.19所示。此外,还确定了每个指标划分为四个等级:U1、U2、U3、U4,各等级的等级分别为5、4、3、1;并对 A1、A2方案的各指标所属等级作了判断,如表 2.20 所示。根据表2.19 和表 2.20 的有关信息,运用基于线性加权和法的关联矩阵法,对这两个软件设计方案的优劣做方案排序。

在这里插入图片描述

答:

由题目可得到权重系数求解表如下:

E i j E_{ij} Eij X 1 X_1 X1 X 2 X_2 X2 X 3 X_3 X3 X 4 X_4 X4 X 5 X_5 X5 F i F_i Fi W i W_i Wi
X 1 X_1 X11001022/15
X 2 X_2 X21101033/15
X 3 X_3 X31111044/15
X 4 X_4 X40001011/15
X 5 X_5 X51111155/15

可以得到价值矩阵表如下:

在这里插入图片描述

于是有 V 2 > V 1 V_2>V_1 V2>V1,所以这两个软件设计方案的优劣排序为 A 2 > A 1 A_2>A_1 A2>A1

第十六题

为对计算软件作综合评估,软件协会建立了如表 2.21 所示的指标体系与对应权重,并组织了一个九人专家评审委员会,该委员会对某软件 A 各质量指标(Cj)的所属等级频数分布如表 2.21 所示。试用模糊综合评判法根据表 2.21 的专家评定个人信息对软件 A所属质量做出判断。
在这里插入图片描述

答:

由以上等级频数表可以得到A的综合评价表

在这里插入图片描述

可以得到A关于四个等级的综合隶属度如下:
V 1 = 0.32 V 2 = 0.36 V 3 = 0.27 V 4 = 0.05 V_1=0.32\\ V_2=0.36\\ V_3=0.27\\ V_4=0.05 V1=0.32V2=0.36V3=0.27V4=0.05
可以得到A的综合价值量为
V = ∑ j = 1 4 F j ⋅ V j = 0.32 × 100 + 0.36 × 85 + 0.27 × 70 + 0.05 × 55 = 84.25 V=\sum_{j=1}^4F_j\cdot V_j=0.32\times 100+0.36\times 85+0.27\times 70+0.05\times 55=84.25 V=j=14FjVj=0.32×100+0.36×85+0.27×70+0.05×55=84.25
1️⃣ 由最大隶属度规则
max 1 ≤ p ≤ 4 V p = max { 0.32 , 0.36 , 0.27 , 0.05 } = V 2 \underset{1\le p\le 4}{\text{max}}V_p=\text{max}\{0.32,0.36,0.27,0.05\}=V_2 1p4maxVp=max{0.32,0.36,0.27,0.05}=V2
由此可知,待评对象A综合评价结果属等级 U 2 U_2 U2

2️⃣ 由最邻近规则
min 1 ≤ p ≤ 4 ∣ V − V p ∣ = min { ∣ 84.85 − 100 ∣ , ∣ 84.85 − 85 ∣ , ∣ 84.85 − 70 ∣ , ∣ 84.85 − 55 ∣ , } = ∣ 84.85 − 85 ∣ = ∣ V − F 2 ∣ \underset{1\le p\le 4}{\text{min}}|V-V_p|=\text{min}\{|84.85-100|,|84.85-85|,|84.85-70|,|84.85-55|,\}=|84.85-85|=|V-F_2| 1p4minVVp=min{∣84.85100∣,∣84.8585∣,∣84.8570∣,∣84.8555∣,}=∣84.8585∣=VF2
由此可知,待评对象A综合评价结果属等级 U 2 U_2 U2

  • 9
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

雨落俊泉

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值