基于网络小说的多维度数据分析与可视化系统

有需要本项目的代码或文档以及全部资源,或者部署调试可以私信博主

本项目可以通过数据爬虫,数据预处理,数据可视化,构建一个以分析和可视化的系统,具有很好的案例教学意义,初学者可以用来学习技术栈,同时也可以作为项目实践。

在这里插入图片描述在这里插入图片描述

在这里插入图片描述

在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

亮点功能

一、时间维度分析

时间线图: x:时间,Y:热度指标(字数、评论数、收藏数、总评数、营养液数等)展示小说发布时间与热度变化的关系,可以直观地看出小说热度随时间推移的变化趋势。

(1)动态柱形图+折线图:x:更新时间,Y:字数,不同类型小说在不同时期的受欢迎程度

(2)动态面积图:x:更新时间,Y:评论数

(3)动态柱状图:柱状图也可以用于展示时间线上的热度变化。

(4)动态气泡图:x:更新时间,Y:营养液数

二、主题维度分析

(1)主题动态词云图: 提取小说中高频词语,并以词云图的形式进行展示,可以直观地看出小说的主要主题和关键词。

(2)主题分布图(饼图、漏斗图):不同主题类型小说数量占比/数量

(3)主题热力图矩阵图:X轴:主题类别。与Y轴:热度指标:收藏数、评论数或者评分等关系图

三、文案情感维度分析

(1)文案词云图: 提取小说中情感词语,并以词云图的形式进行展示,可以直观地看出小说的情感倾向。

(2)文案情感分析图(动态多维度雷达图):积极/中和/消极,-1:负面情感,0中性情感,1正面情感。根据情感分析的结果,将每个时间点的情感倾向映射到相应的数值上。

情感趋势图: 展示小说情感倾向随时间推移的变化趋势,可以看出小说情感表达的变化规律(3)作者热度与其他变量的关系网络图

积分排名top5作者的积分与类型、进度、发表时间、章节、评论数、收藏数、总书评数等的关系图

四、预测分析

1、流行趋势预测:通过作者名称、作品、标签、类型等数据,可以分析出哪些类型的网络小说更受欢迎,哪些作者的作品更受欢迎,从而预测出未来可能会流行的网络小说类型和作者。

2、签约成功率预测:通过签约状态数据、作品数据等,可以分析出哪些类型的作品更容易被平台或出版社签约,从而帮助作者提高签约成功率。

每文一语

升级

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

王小王-123

您觉得舒心就点一点吧~~~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值