需要本项目的可以私信博主
第1章 绪论
1.1 选题的目的及意义
1.1.1目的
中国作为一个基建大国,全国范围内的建筑工地和施工场所不计其数。在工业生产中,一直存在着各种各样的潜在风险..........
1.1.2意义
随着深度学习技术的发展,很多学者都进行过安全帽佩戴识别的相关研究。由于真实检测任务中施工人员密集,检测目标小;....................
1.2 选题的背景及国内外研究现状
1.2.1 背景
首先,从行业应用...................
1.2.2 国内外研究现状
随着工业安全意识的不断提高,对于工人安全帽佩戴的检测成为了重要的研究课题。七十年代后期,计算机视觉成为人工智能领域的热门研究对象[2]。近年来,深度学习和目标检测算法在计算机视觉领域取得了显著的进展,为安全帽佩戴检测提供了新的解决方案。其中,YOLO系列算法以其高效性和准确性受到了广泛关注[3]。许多研究者也提出将YOLO算法应用于安全帽佩戴的实时检测上[4]。
..............
第2章 关键技术理论介绍
2.1 YOLOv7
2.1.1 YOLOv7算法简介
YOLOv7算法是一种目标检测的算法,与之相比之前的YOLO[15]系列它使用了高效聚合网络,也就是网络结构中出现的ELAN模块,其有效地加强了网络的学习能力。主要是通过深度学习技术实现对图像中目标物体的快速、精准检测[16]。作为YOLO系列的成员,YOLOv7在保持高速检测的同时,也进一步的提升了检测的精度和性能。.........
2.1.2 YOLOv7算法的基本思想
YOLOv7是一个用于物体检测的深度学习算法,它是基于YOLO(You Only Look Once)系列算法的最新版本之一。其基本思想是通过将物体检测任务转化为一个回归问题,即在图像上直接预测边界框的位置和类别。
YOLOv7算法的基本思想可以总结为以下几点:
1. 单次前向传播:YOLOv7使用单个神经网络模型来直接在输入图像上进行前向传播,一次完成物体检测的任务,避免了传统算法中使用滑动窗口和多次图像传播的复杂过程。
2. 锚点框匹配:YOLOv7通过预定义的一组锚点框来检测不同比例和形状的物体,模型会预测每个边界框的类别和位置信息,并根据锚点框与真实物体的匹配情况进行训练。
3. 特征提取网络:YOLOv7中采用了一种基于CSPDarknet53的骨干特征提取网络,能够有效地提取图像特征,提高检测性能。
4. 多尺度特征融合:为了更好地捕获不同尺度的物体,YOLOv7引入了多尺度融合机制,将不同层级的特征图进行融合,提高了模型的检测能力。
5. 网络优化:YOLOv7在网络结构和训练策略上进行了优化,提升了模型的准确性和速度,并且能够在不同场景下实现高效的物体检测。
2.1.3 YOLOv7算法目标检测评价指标
(1)准确率 (Precision);
在目标检测中,算法检测出的正样本中真正为正样本的比例叫做准确率。准确率定义为:
Precision = TP / (TP + FP)
其中,TP(True Positive)表示真正例,也就是算法正确检测出的目标;FP(False Positive)表示假正例,也就是算法错误地将非目标检测为目标。在目标检测中,算法检测出的目标中真正目标的比例越高也就表明准确率越高。
(2)mAP (mean Average Precision);
mAP,也就是平均精度均值,是目标检测任务中最主要的评价指标之一。它结合了准确率(Precision)和召回率(Recall)两个指标,并且判别了不同置信度阈值下的性能。在目标检测中,mAP越高,目标检测任务上的性能也就越好。
(3)召回率 (Recall);
在目标检测中,所有正样本中被算法检测出的比例被叫做召回率。在目标检测中,召回率定义为:
Recall = TP / (TP + FN)
其中,FN(False Negative)表示假反例,也就是算法未能检测出的目标。在目标检测中,召回率越高,也就说明算法检测出的目标越全面,漏检的情况越少。
(4)F1分数 (F1 Score);
在目标检测中,准确率和召回率的调和平均值被叫做F1分数,用来评估算法的综合性能。F1分数的计算公式为:
F1 Score = 2 * (Precision * Recall) / (Precision + Recall)
F1分数越高,也就说明算法在准确率和召回率两个指标上表现越好。它平衡了准确率和召回率之间的权衡,为算法的性能提供了一个良好的综合评价指标。
2.2 YOLOv7数据增强技术
YOLOv7数据增强技术是一种用于加强训练图像多样性的方法,用来提高模型对从各种各样的环境中所获得的图像的鲁棒性。这一系列的方法在模型的训练时期发挥了很大作用,这样就不会修改网络的结构了,只会对模型最后学习得到的数值造成影响。
经常用到的数据增强技术有几何变换和像素变换。几何变换主要有缩放、旋转、平移、翻转、缩放、裁剪等。在一些相关的任务中当中,使用这些方法的时侯就须要关注标签数据的改变,就比如翻转在目标检测中使用的时候,边界框就要被做一些相应的调整。像素变换则主要有加椒盐噪声、调整白平衡、高斯模糊、饱和度、调节亮度、调整HSV对比度、直方图均衡化、高斯噪声等。
另外,数据的增强方法在YOLOv7中还引入了很多,就比如模拟遮挡和马赛克数据增强技术,前者就是用一个物体覆盖另一个物体的一部分,后者就是将四张图像进行随机裁剪、排布、缩放,在最后进行拼接。这些方法就进一步得加强了训练数据的多样性。
数据增强技术在YOLOv7中被视为一个极其关键的组成部分,与损失函数和网络结构等一起,共同决定了模型的最终性能。经过合理的运用数据增强技术,YOLOv7能够在多种多样的复杂环境下实现准确、鲁棒的目标检测。
整体来说,YOLOv7数据增强技术经过增加训练图像的多样性,加强了模型的泛化能力和鲁棒性,在各种实际应用场景中模型都能够很好地适应。
2.3 卷积神经网络基础
卷积神经网络(Convolutional Neural Network,简称CNN)是一种深度神经网络,卷积神经网络是由五个层次所构成的,它们分别是输入层、卷积层、池化层,全连接层和输出层,每一层都有其相对应的特殊功能和作用。...................
2.4 PyTorch介绍
PyTorch是Python当中一个开源的深度学习框架,这使得开发者和研究人员们可以使用Python来轻松训练和设计神经网络。因为PyTorch所具有的易用性、灵活性以及强大的GPU加速能力,这使得它在深度学习领域迅速获得了非常广泛的应用[21]。...............
2.4.1 Tensor简介
Tensor是PyTorch中的基本对象,意思为张量,表示多维的矩阵,是PyTorch中的基本操作对象之一。比如以下使用jupyter notebook 进行编写案例。与Numpy的ndarray类似,Tensor的声明和获取size可以如图2-4-1所示:
图2-4-1
2.4.2 Variable简介
图2-4-2
Variable是PyTorch的另一个基本变量,可以把它理解为是对Tensor的一个封装。Variable用于放入计算图中以进行前向传播、反向传播和自动求导,如图2-4-2所示:
在Variable中有三个重要属性:data、grad、creator。............
2.4.2 CUDA简介
CUDA(Compute Unified Device Architecture)是由显卡厂商NVIDIA推出的运算平台和API,它使得开发者能够使用C/C++、Fortran等编程语言在GPU上进行通用计算。CUDA最初是为了加速图形和图像处理而设计的,但随着GPGPU技术的发展,它已经成为了一种广泛应用于科学计算、数据分析、机器学习等领域的计算平台。...........
2.5 Labelimg介绍
在计算机视觉和深度学习领域,标注数据是非常重要的一步,它为模型训练和算法评估提供了基础。而图片标注工具是进行标注的必备工具之一。Labelimg是一款功能强大、易于使用的图片标注工具。Labelimg是一款开源的图片标注工具,使用Python编写,基于PyQt5框架。它提供了一个直观的图形用户界面,方便用户对图片进行标注,并生成标注结果[23]。Labelimg支持多种常见的标注格式,如PASCAL VOC、YOLO等,适用于各种计算机视觉任务。
...................
2.6 本章小结
本章主要介绍关键技术理论知识,其中包括YOLOv7算法简介,YOLOv7算法是一种目标检测的算法,主要是通过深度学习技术实现对图像中目标物体的快速、...............
第3章 基于YOLOv7的安全帽佩戴目标检测算法
3.1 YOLOv7的网络结构
YOLOv7的网络结构是一个十分复杂结构,但其可以分为三个主要部分:Backbone网络、Neck网络和Head网络。其中,Backbone网络负责对输入图片进行特征提取,这个结构最终会输出三个不同尺寸的特征层。这是网络的主体部分,负责从输入图像中提取特征。它通常由多个卷积层、池化层、激活函数等组成,形成一个深层的卷积神经网络。...........
总的来说,YOLOv7的网络结构设计主要提高目标检测的精度和速度,通过优化骨干网络、融合多尺度特征以及改进检测头等方式,实现了更高的性能表现。
图3-1-1 YOLOv7的网络结构
3.2损失函数
损失函数简单的来说就是每一个样本经过模型后会得到一个预测值,然后得到的预测值和真实值的差值就成为损失,损失值越小就可以证明模型越成功),我们知道有许多不同种类的损失函数,这些函数本质上就是计算预测值和真实值的差距的一类型函数,然后经过库(如pytorch,tensorflow等)的封装形成了有具体名字的函数。
.......
3.3 安全帽数据集的采集和处理
数据集的训练对于深度学习模型最终准确率的提升至关重要。在训练过程中,安全帽模型的性能主要取决于所使用的安全帽数据的数量和质量。因此,获取一个数量充足且质量上乘的数据集对于本课题的实现具有至关重要的意义。
3.3.1数据收集与标注
本文所进行试验所使用的数据集均源自于公开的、开源的安全帽数据集 ......,该数据集总计包含7581张图片,其中9044人佩戴了安全帽,而111514人则未佩戴。每张图片都经过了标注,以明确区分是否佩戴安全帽。部分图像数据的示例可见于图3-3-1。
图3-3-1开源安全帽数据集部分数据展示
在构建安全帽佩戴数据集的过程中,确保正负样本的多样性是至关重要的,因为这能够极大地提升模型在特殊场景下对安全帽佩戴的检测精确度。多样性意味着数据集应该涵盖各种可能的场景,如不同的光线条件、角度、背景、人物姿态以及安全帽的款式和颜色等。这样的多样性可以使得模型在训练时学习到更多的特征,从而提高其在实际应用中的泛化能力。.............................
以下展示了部分正样本数据的筛选原则示例。从这些示例中,可以看到数据集不仅包含了常见的安全帽佩戴场景,还涵盖了各种特殊和复杂的场景。这样的数据集设计,将有助于我们训练出更加精确和鲁棒的安全帽佩戴检测模型。如图3-3-2所示。
图3-3-2正样本筛选选择
在正样本的标注中,有正规佩戴好安全帽的常规情况如图 a)所示;还有虽然佩戴好了安全 帽,但是比较模糊的情况如图 b)所示;还有特殊情况下工人背面朝向镜头佩戴安全帽的情况如图 c)所示;也包括待检测目标很小、距离较远的情况如图 d)所示。数据集中的正样本不仅包含上述特殊情况,更广泛地涵盖了多种复杂场景。我们准确标注了这些多场景下的正样本图片,此举对于提升深度学习训练的多样性至关重要。通过丰富多样的训练数据,我们能够有效地提高安全帽佩戴实时检测的准确率,确保模型在各种实际场景中都能准确识别安全帽的佩戴情况。
数据集中负样本数据筛选原则如图 3-3-3所示。
图3-3-3负样本筛选选择
在负样本的标注过程中,我们考虑了多种情况。如图a)所示,包括了一些未正确佩戴安全帽的常规情况;图b)则模拟了真实监控画面中的场景,展示了远距离下待检测目标较小且数量众多的未佩戴样本;.........................
3.3.2数据集的划分
在展开正式的模型训练工作之前,对于数据集的处理是一个必不可少的步骤。将数据集按照 8:1:1 的比例划分为训练集、验证集和测试集。这种划分策略确保了每个集合都包含了足够的数据量,同时保证了它们之间的独立性,..........................
图3-3-4 数据集划分部分代码展示
通过这种科学的数据集划分方式,可以确保模型在训练过程中得到充分的学习和调整,并在最终的评估中展现出良好的性能。这对于提高安全帽检测任务的准确性和可靠性具有重要意义。
3.4 YOLO深度学习环境搭建
表3-4-1环境配置说明
实验设备及软件包 | 参数及版本号 |
操作系统 | Windows11 |
硬件设备 | NVIDIA GeForce RTX 2070 8GB |
Pytorch | 1.13.0 |
Python | 3.7 |
Cuda | 10.7 |
Pycharm | 2019.3.3 |
Anaconda | professional-2019.3.3 |
首先,选择安装PyCharm作为我们的开发集成环境(IDE),因为它提供了诸如代码自动补全、项目管理以及版本控制等一系列强大的功能,极大地提升了Python开发的便捷性和效率。完成PyCharm的安装后,紧接着的关键........................
3.5 YOLOV7模型的构建与评估
在环境搭建和数据集准备好之后,接下来的步骤便是构建深度学习模型并展开相关任务。考虑到YOLOv7的广泛应用和卓越性能,本研究决定以其作为核心模型架构。相较于传统机器学习,深度学习框架如YOLOv7提供了一种更加全面且高效的解决方案。这种方案使得研究人员无需从零开始编写冗长的.........................
3.5.1 YOLOV7相关参数介绍
图3-5-1相关部分训练参数
--weights:预权重路径。这个参数决定了模型训练的起点。预训练的权重文件通常用于在已有知识的基础上进一步训练模型,这有助于加速训练过程并可能提高最终模型的性能。
--cfg:训练中模型的参数定义。这个参数通常指向一个YAML文件,该文件详细描述了模型的配置信息,包.......................
3.5.2模型的训练
实验中的训练结果如图 3-5-2所示。
图3-5-1模型训练结果
从模型训练结果分析来看,成功训练出的安全帽检测模型展现出了强大的图像特征提取能力。在多种复杂情况下,如环境背景多变和目标尺度不同,该模型均能保持较高的识别精度。这一优异表现充分证明了所选的yolov7.pt权重在提取检测目标特征方面具有高度的准确性和适应性,从而生成了最符合检测目标的先验框。即使在存在遮挡、图像模糊或待检测目标密集等挑战性场景下,模型依然能够准确识别安全帽的佩戴情况。这充分说明了训练的模型具备在各种复杂环境下稳定识别目标的能力。
yolov7.pt权重模型在训练 300次后,按照模型评估指标,评估结果如图 3-5-1所示。
图3-5-1模型评估结果
图中展示的安全帽检测模型各项指标的评估结果清晰明了。经过200次的训练迭代,模型开始显现收敛的趋势,到第300次迭代后,各项评估指标几乎保持不变,表明模型已趋于稳定,完成了收敛过程.................
3.5.3 检测效果评估对比与模型选择
实验选取了yolov7-x、yolov7-w6和yolov7-E6权重模型进行实验对比。不同权重模型之间的实验对比结果,如表 3-5-1所示。
Model | mAP(%) | FPS | FLOPs/G | Params/M |
yolov7 | 90.5 | 161.4 | 17.5 | 37.5 |
yolov7-x | 90.7 | 114.3 | 104.1 | 59.3 |
yolov7-w6 | 90.9 | 84.8 | 208.4 | 150.9 |
yolov7-E6 | 91.1 | 56.1 | 329.2 | 250.4 |
1. "mAP(%)" 是指平均精度均值,用于衡量模型的性能。数值越高,模型的性能越好。
2. "FPS" 指的是每秒帧数,用于衡量模型的运行速度。数值越高,模型运行得越快。
3. "FLOPs/G" 指的是每千次浮点运算的数量,用于衡量模型的计算复杂度。数值越低,模型的计算复杂度越低。
4. "Params/M" 指的是模型的参数数量,用于衡量模型的大小。数值越低,模型越小。
由表3-5-1可以对比出,yolov7权重模型平均精度均值为90.5%,虽然略小于 yolov7-x、yolov7-w6和yolov7-E6权重模型,但是在其他评价指标上明显优于另外三种权重模型。在检测速度上,yolov7算法达到了 164.1FPS,分别比 yolov7-x,yolov7-w6和 yolov7-E6提高了 47.1FPS,76.6FPS 和 105.3FPS,另外,在浮点运算次数和参数数量上yolov7权重模型均优于yolov7-x、yolov7-w6和yolov7-E6权重模型。这说明yolov7权重模型更加的轻量,在运行时需要的计算资源更少,适合部署在资源受限的环境中。
综上所述,相比较其他权重的检测模型,轻量化的yolov7权重模型,在保持了较小模型体积和占用计算资源更少的同时,也取得了较高的检测精度。
图3-5-2相关训练结果和数据
图3-5-3检测效果图
总体而言,实验结果令人满意,安全帽佩戴目标检测表现优秀,精确度也相当高,可以达到90%的精确率。
3.6本章小结
在本章节中,我们深入探讨了基于YOLOv7框架的模型构建过程,并对相关参数的调整策略进行了详细解析。之所以选定YOLOv7作为我们的主要模型框架,不仅源于它在深度学习领域内的广泛认可和卓越表现,更得益于其提供的全面且易于实施的解决方案。这一方案极大地简化了模型搭建和训练过程,避免了从零开始编程的繁琐与复杂,使得我们能够将更多的精力聚焦于模型性能的优化上。
............
第4章 总结
参考文献
................
每文一语
学习是多元化的