最长公共子序列
子序列概念: 一个给定序列的子序列是在该序列中删去若干元素后得到的序列。例如X=(A,B,C,B,D,A,B),X的子序列有(A,B,C,B,A),(A,B,D),(B,C,D,B)。子序列与子串的不同在于子串的元素在原序列中是连续的。
最长公共子序列问题: 给定两个序列X和Y,找出X和Y的一个最长公共子序列。
解决方法
最长公共子序列采用动态规划解决。动态规划关键在于找出状态和状态转移方程。
例如,序列X=(a,b,c,f,b,c)、Y=(a,b,f,c,a,b)。
状态:用L[i][j]表示子序列Xi和Yj的最长公共子序列长度。
状态转移:
- 当Xi=Yj,找出Xi-1和Yj-1的最长公共子序列,然后在其尾部加上Xi即可得到X和Y的最长公共子序列。
- 当Xi != Yj,求解两个子问题。1、求Xi-1和Yj的最长公共子序列;2、求Xi和Yj-1的最长公共子序列。然后取其最大值。
状态转移方程:
L[i-1][j-1]+1 (当Xi=Yj,i>0,j>0)
L[i][j] = {
max(L[i][j-1],L[i-1][j]) (当当Xi!=Yj,i>0,j>0)
填表
根据上面的分析,可以知道,推导一个新的L[i][j]的值时,只需要看这个元素的左上角,左边,右边就可以。如果Xi=Yj,则用左上角元素加1;如果Xi != Yj,则取左边元素和上边元素的较大值。表中第一行和第一列全为0的原因:当X为空串时,不论Y是什么,它们的最长公共子序列长度都为0;反之,当Y为空串时,不论X是什么,它们的最长公共子序列长度都为0。
例题
题意就是给定两个序列,然后求这两个序列的最长公共子序列的长度。
代码1
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;
int dp[maxn][maxn];
string str1,str2;
int LCS()
{
memset(dp,0,sizeof(dp));
for(int i=1;i<=str1.length();i++){
for(int j=1;j<=str2.length();j++){
if(str1[i-1]==str2[j-1]){
dp[i][j]=dp[i-1][j-1]+1;
}else{
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
}
}
}
/*输出最长公共子序列
int x=str1.length(),y=str2.length();
string lcs;
cout<<"----------"<<endl;
while(x>0&&y>0){
if(str1[x-1]==str2[y-1]){
lcs+=str1[x-1];
x=x-1;y=y-1;
}else{
if(dp[x-1][y]>dp[x][y-1]){
x=x-1;
}else{
y=y-1;
}
}
}
reverse(lcs.begin(),lcs.end());
cout<<lcs<<endl;*/
return dp[str1.length()][str2.length()];
}
int main()
{
while(cin>>str1>>str2){
cout<<LCS()<<endl;
//cout<<"----------"<<endl;
}
return 0;
}
代码2(利用滚动数组进行空间优化)
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;
int dp[2][maxn];
string str1,str2;
int LCS()
{
memset(dp,0,sizeof(dp));
int now=0;
for(int i=1;i<=str1.length();i++){
for(int j=1;j<=str2.length();j++){
if(str1[i-1]==str2[j-1]){
dp[now^1][j]=dp[now][j-1]+1;
}else{
dp[now^1][j]=max(dp[now][j],dp[now^1][j-1]);
}
}
now^=1;
}
return dp[now][str2.length()];
}
int main()
{
while(cin>>str1>>str2){
cout<<LCS()<<endl;
}
return 0;
}