求最长公共子序列长度和输出

最长公共子序列

子序列概念: 一个给定序列的子序列是在该序列中删去若干元素后得到的序列。例如X=(A,B,C,B,D,A,B),X的子序列有(A,B,C,B,A),(A,B,D),(B,C,D,B)。子序列与子串的不同在于子串的元素在原序列中是连续的。
最长公共子序列问题: 给定两个序列X和Y,找出X和Y的一个最长公共子序列。

解决方法

最长公共子序列采用动态规划解决。动态规划关键在于找出状态和状态转移方程。
例如,序列X=(a,b,c,f,b,c)、Y=(a,b,f,c,a,b)。
状态:用L[i][j]表示子序列Xi和Yj的最长公共子序列长度
状态转移:

  • 当Xi=Yj,找出Xi-1和Yj-1的最长公共子序列,然后在其尾部加上Xi即可得到X和Y的最长公共子序列。
  • 当Xi != Yj,求解两个子问题。1、求Xi-1和Yj的最长公共子序列;2、求Xi和Yj-1的最长公共子序列。然后取其最大值。
    状态转移方程:
 				L[i-1][j-1]+1	(当Xi=Yj,i>0,j>0)
 L[i][j]  = {
 				max(L[i][j-1],L[i-1][j])	(当当Xi!=Yj,i>0,j>0)

填表

根据上面的分析,可以知道,推导一个新的L[i][j]的值时,只需要看这个元素的左上角,左边,右边就可以。如果Xi=Yj,则用左上角元素加1;如果Xi != Yj,则取左边元素和上边元素的较大值。表中第一行和第一列全为0的原因:当X为空串时,不论Y是什么,它们的最长公共子序列长度都为0;反之,当Y为空串时,不论X是什么,它们的最长公共子序列长度都为0。
在这里插入图片描述

例题

例题hdu-1159

题意就是给定两个序列,然后求这两个序列的最长公共子序列的长度。

代码1

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;
int dp[maxn][maxn];
string str1,str2;
int LCS()
{
	memset(dp,0,sizeof(dp));
	for(int i=1;i<=str1.length();i++){
		for(int j=1;j<=str2.length();j++){
			if(str1[i-1]==str2[j-1]){
				dp[i][j]=dp[i-1][j-1]+1;
			}else{
				dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
			}
		}
	}
	/*输出最长公共子序列 
	int x=str1.length(),y=str2.length();
	string lcs;
	cout<<"----------"<<endl;
	while(x>0&&y>0){
		if(str1[x-1]==str2[y-1]){
			lcs+=str1[x-1];
			x=x-1;y=y-1;
		}else{
			if(dp[x-1][y]>dp[x][y-1]){
				x=x-1;
			}else{
				y=y-1;
			}
		}
	}
	reverse(lcs.begin(),lcs.end());
	cout<<lcs<<endl;*/
	return dp[str1.length()][str2.length()];
}
int main()
{
	while(cin>>str1>>str2){
		cout<<LCS()<<endl;
		//cout<<"----------"<<endl;
	}
		
	return 0;
}

代码2(利用滚动数组进行空间优化)

#include<bits/stdc++.h>
using namespace std;
const int maxn = 1005;
int dp[2][maxn];
string str1,str2;
int LCS()
{
	memset(dp,0,sizeof(dp));
	int now=0; 
	for(int i=1;i<=str1.length();i++){
		for(int j=1;j<=str2.length();j++){
			if(str1[i-1]==str2[j-1]){
				dp[now^1][j]=dp[now][j-1]+1;
			}else{
				dp[now^1][j]=max(dp[now][j],dp[now^1][j-1]);
			}
			
		}
		now^=1;	
	}
	
	return dp[now][str2.length()];
}
int main()
{
	while(cin>>str1>>str2){
		cout<<LCS()<<endl;
	}
		
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值