损失函数L对参数w和b的梯度如何计算,当w为多维时

#%matplotlib inline
import random
import torch
from d2l import torch as d2l

def synthetic_data(w, b, num_examples):  #@save
    """生成y=Xw+b+噪声"""
    X = torch.normal(0, 1, (num_examples, len(w)))
    y = torch.matmul(X, w) + b#matmul是矩阵相乘的方法
    y += torch.normal(0, 0.01, y.shape)
    return X, y.reshape((-1, 1))#最后返回两个数据,y.reshape((-1,1)),其中-1代表行根据有多少数据来定,列是第2列,0代表第一列

def data_iter(batch_size, features, labels):
    num_examples = len(features)
    indices = list(range(num_examples))#range生成从0到num_examples的数据,然后变为list列表,最后赋值给indices
    # 这些样本是随机读取的,没有特定的顺序,shuffle为随机打乱方法,在random里
    random.shuffle(indices)
    for i in range(0, num_examples, batch_size):#从0到num_examples,每一步是batch_size,也就是一个小批量的大小
        batch_indices = torch.tensor(
            indices[i: min(i + batch_size, num_examples)])#利用切片,每次切片出一个小批量转换为tensor后赋值
        yield features[batch_indices], labels[batch_indices]#yield是一个迭代器

def linreg(X, w, b):  #@save
    """线性回归模型"""
    return torch.matmul(X, w) + b

def squared_loss(y_hat, y):  #@save
    """均方损失"""
    return (y_hat - y.reshape(y_hat.shape)) ** 2 / 2


def sgd(params, lr, batch_size):  #@save
    """小批量随机梯度下降"""
    with torch.no_grad():
        for param in params:
            param -= lr * param.grad / batch_size
            param.grad.zero_()



true_w = torch.tensor([2, -3.4])
true_b = 4.2
features, labels = synthetic_data(true_w, true_b, 1000)

d2l.set_figsize()#定义图像尺寸是默认的大小
d2l.plt.scatter(features[:,1].detach().numpy(), labels.detach().numpy(), 5);




batch_size = 10

for X, y in data_iter(batch_size, features, labels):#最后X,y从函数中拿出数据,是一个小批量的数据,小批量为10,所以X输出10行
    print(X, '\n', y)
    break

w = torch.normal(0, 0.01, size=(2,1), requires_grad=True)
b = torch.zeros(1, requires_grad=True)


lr = 0.03
num_epochs = 3
net = linreg
loss = squared_loss

for epoch in range(num_epochs):
    for X, y in data_iter(1, features, labels):#batch_size=1
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        print(X)#这里是测试
        print((torch.mm(X,w)+b-y)*X)
        print(w.grad)    #这样可以看l对w的梯度
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数
    with torch.no_grad():
        train_l = loss(net(features, w, b), labels)
        print(f'epoch {epoch + 1}, loss {float(train_l.mean()):f}')

print(f'w的估计误差: {true_w - w.reshape(true_w.shape)}')
print(f'b的估计误差: {true_b - b}')


专注于看这个函数

for epoch in range(num_epochs):
    for X, y in data_iter(1, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        print(X)
        print((torch.mm(X,w)+b-y)*X)
        print(w.grad)    #这样可以看l对w的梯度
        sgd([w, b], lr, batch_size)  # 使用参数的梯度更新参数

这里的data_iter函数中的1为batch_size,我想看一下w的梯度到底怎样求的,X原来是(10,1)现在我取batch_size=1,说明我只提取他的第一行也就是([[0.7145,-0.9413]])

这里可设X=\begin{bmatrix}x_{1} & x_{2} \end{bmatrix},W=\begin{bmatrix} w_{1}\\ w_{2} \end{bmatrix},b就当做0,y的size=(10,1)这里同样取他的第一行

L=\frac{1}{2}*{(\hat{y}-y)}2,\hat{y} = W*X+b

然后\frac{\partial l}{\partial W}=\frac{\partial l}{\partial w_{1}}+\frac{\partial l}{\partial w_{2}}=(w_{1}*x_{1}+w_{2}*x_{2}+b-y)*x_{1}+(w_{1}*x_{1}+w_{2}*x_{2}+b-y)*x_{2}

而上面代码的X=\begin{bmatrix}x_{1} & x_{2} \end{bmatrix},也就相当于\frac{\partial l}{\partial W}=\frac{\partial l}{\partial w_{1}}+\frac{\partial l}{\partial w_{2}}=(w_{1}*x_{1}+w_{2}*x_{2}+b-y)*X

所以得到的L的size=(1,2),而W==\begin{bmatrix} w_{1}\\ w_{2} \end{bmatrix}是有两个参数的,所以W.grad也有两个参数,这里可以看到第2个tensor的值和第三个tensor的值一样

如果batch_size=2呢?

for epoch in range(num_epochs):
    for X, y in data_iter(2, features, labels):
        l = loss(net(X, w, b), y)  # X和y的小批量损失
        # 因为l形状是(batch_size,1),而不是一个标量。l中的所有元素被加到一起,
        # 并以此计算关于[w,b]的梯度
        l.sum().backward()
        print(X)
        print((torch.mm(X,w)+b-y)*X)
        print(w.grad)    #这样可以看l对w的梯度

 

 这里X的size=(2,2),设X=\begin{bmatrix} x_{1} & x_{2}\\ x_{3}&x_{4} \end{bmatrix} ,W=\begin{bmatrix} w_{1}\\ w_{2} \end{bmatrix}

那么\frac{\partial l}{\partial W}=\frac{\partial l}{\partial w_{1}}+\frac{\partial l}{\partial w_{2}}=(w_{1}*x_{1}+w_{2}*x_{2}+b-y)*x_{1}+(w_{1}*x_{1}+w_{2}*x_{2}+b-y)*x_{2}+(w_{1}*x_{3}+w_{2}*x_{4}+b-y)*x_{3}+(w_{1}*x_{3}+w_{2}*x_{4}+b-y)*x_{4}

这里*x1和*x3对应\frac{\partial l}{\partial w_{1}},*x2和*x4对应\frac{\partial l}{\partial w_{2}}

所以可以看到第三个tensor的0.0062是第二个tensor的第一行和第一列的总和,也就是\frac{\partial l}{\partial w_{1}}=0.0064-0.0002=0.0062。而\frac{\partial l}{\partial w_{2}}=-0.0165+0.0002=-0.0163

这样不管W是(1,1)还是(10,1)或者size=(3,2),我们都能知道W的grad为什么有时候是size=(1,2)的tensor,因为L对W里的每一个小参数都求了偏导,同理求b的偏导也一样的方法

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值