2022北京高考数学压轴题21题的一种解答

2022年北京高考数学压轴题21题的一种解答


如题,近日2022年北京高考数学最后一题已经浮出水面,在此以我微薄的才学,对2022北京高考数学压轴题(新定义题型)做一种解答。该题型十分灵活,我的解答未必是最好的解答,很可能有改进空间和全然不同的思路。这种做法考场上应该是写不完的。

随意选择了一个标签是因为CSDN等级太低无法自定义标签且没有标签文章发不出去。

前两问大概用时不超过5min,第三问如果第一次见的话我需要思考两三个小时,高考考场上是肯定做不完的。

一、题目

(21) (本小题 15 分)
已知 Q : a 1 , a 2 , ⋯   , a k Q: a_{1}, a_{2}, \cdots, a_{k} Q:a1,a2,,ak 为有穷整数数列. 给定正整数 m m m, 若对任意的 n ∈ { 1 , 2 , ⋯   , m } n \in\{1,2, \cdots, m\} n{1,2,,m}, 在 Q Q Q 中存在 a i , a i + 1 , a i + 2 , ⋯   , a i + j ( j ≥ 0 ) a_{i}, a_{i+1}, a_{i+2}, \cdots, a_{i+j}(j \geq 0) ai,ai+1,ai+2,,ai+j(j0), 使得 a i + a i + 1 + a i + 2 + ⋯ + a i + j = n a_{i}+a_{i+1}+a_{i+2}+\cdots+a_{i+j}=n ai+ai+1+ai+2++ai+j=n, 则称 Q Q Q m − m- m 连续可表数列.
(I) 判断 Q : 2 , 1 , 4 Q: 2,1,4 Q:2,1,4 是否为 5 − 5 - 5连续可表数列? 是否为 6 − 6 - 6连续可表数列? 说明理由;
(II) 若 Q : a 1 , a 2 , ⋯   , a k Q: a_{1}, a_{2}, \cdots, a_{k} Q:a1,a2,,ak 8 − 8- 8连续可表数列, 求证: k k k 的最小值为 4 ;
(III) 若 Q : a 1 , a 2 , ⋯   , a k Q: a_{1}, a_{2}, \cdots, a_{k} Q:a1,a2,,ak 20 − 20 - 20连续可表数列, a 1 + a 2 + ⋯ + a k < 20 a_{1}+a_{2}+\cdots+a_{k}<20 a1+a2++ak<20, 求证: k ≥ 7 k \geq 7 k7.

二、解答

解:首先理解清题意,
“给定正整数 m m m, 若对任意的 n ∈ { 1 , 2 , ⋯   , m } n \in\{1,2, \cdots, m\} n{1,2,,m}, 在 Q Q Q 中存在 a i , a i + 1 , a i + 2 , ⋯   , a i + j ( j ≥ 0 ) a_{i}, a_{i+1}, a_{i+2}, \cdots, a_{i+j}(j \geq 0) ai,ai+1,ai+2,,ai+j(j0), 使得 a i + a i + 1 + a i + 2 + ⋯ + a i + j = n a_{i}+a_{i+1}+a_{i+2}+\cdots+a_{i+j}=n ai+ai+1+ai+2++ai+j=n, 则称 Q Q Q m − m- m 连续可表数列”,意思就是1~m中的任何一个整数都可以被一个 m − m- m连续可表数列中的连续几项(可以是一项)的和表示,做完第一问就有很直观的理解了。

这里有一个潜在的性质,就是“对称性”,将Q倒序一下,Q中连续几项的和所有可能的情况还是原来的那些情况,因为可以取和的方式也是完全对称的。

(I)

判断 Q : 2 , 1 , 4 Q: 2,1,4 Q:2,1,4 是否为 5 − 5 - 5连续可表数列? 是否为 6 − 6 - 6连续可表数列? 说明理由;

判断:Q为 5 − 5 - 5连续可表数列,但不是 6 − 6 - 6连续可表数列。
理由:
a 2 = 1 a 1 = 2 a 1 + a 2 = 1 + 2 = 3 a 3 = 4 a 2 + a 3 = 1 + 4 = 5 a 1 + a 2 + a 3 = 7 a_2=1\\ a_1=2\\ a_1+a_2=1+2=3\\ a_3=4\\ a_2+a_3=1+4=5\\ a_1+a_2+a_3=7 a2=1a1=2a1+a2=1+2=3a3=4a2+a3=1+4=5a1+a2+a3=7
Q:2,1,4 中连续若干项的和可以表示出1~5中的所有整数,所有 3 + 2 + 1 = 6 3+2+1=6 3+2+1=6种情况均不能表示6,故Q不是 6 − 6 - 6连续可表数列。

(II)

Q : a 1 , a 2 , ⋯   , a k Q: a_{1}, a_{2}, \cdots, a_{k} Q:a1,a2,,ak 8 − 8- 8连续可表数列, 求证: k k k 的最小值为 4 ;

证明:不妨说Q为k项有穷数列,这道题只需要证明 k ≤ 3 k \leq 3 k3时不成立(Q不可能为 8 − 8- 8连续可表数列),并举出一个例子即可,我估计忘记举例子应该会扣一些分数。

k ≤ 3 k \leq 3 k3,则Q中连续几项的和最多有 C 3 1 + C 3 2 + C 3 3 = 6 C_3^1+C_3^2+C_3^3=6 C31+C32+C33=6种情况,不可能表示 1 , 2 , ⋯   , 8 1,2,\cdots,8 1,2,,8共8个数,所以 k ≥ 4 k \geq 4 k4

找一个 k = 4 k=4 k=4的Q的例子,比如 Q : 5 , 2 , 1 , 3. Q:5,2,1,3. Q5,2,1,3.

a 3 = 1 a 2 = 2 a 4 = 3 a 3 + a 4 = 4 a 1 = 5 a 2 + a 3 + a 4 = 6 a 1 + a 2 = 7 a 1 + a 2 + a 3 = 8 a_3=1\\ a_2=2\\ a_4=3\\ a_3+a_4=4\\ a_1=5\\ a_2+a_3+a_4=6\\ a_1+a_2=7\\ a_1+a_2+a_3=8 a3=1a2=2a4=3a3+a4=4a1=5a2+a3+a4=6a1+a2=7a1+a2+a3=8
我在这里提供一种找Q的思路,可以从3项的数列开始,想办法凑出1~8中缺少的数(最好是尽可能避免浪费,比如1+2=3,3=3出现两次,但是 8 − 8- 8连续可表数列还是很好找的,杀鸡焉用牛刀,不过这个思路第三问也是要用的)

比如2,1,3只缺7,8,前面加5即可,或者第一问的2,1,4(这个应该最省时间),只差6和8没有出现,所以在末尾加一个1凑成2,1,4,1即可,硬试也不是不行,就是要多试几次。

(III)

Q : a 1 , a 2 , ⋯   , a k Q: a_{1}, a_{2}, \cdots, a_{k} Q:a1,a2,,ak 20 − 20 - 20连续可表数列, a 1 + a 2 + ⋯ + a k < 20 a_{1}+a_{2}+\cdots+a_{k}<20 a1+a2++ak<20, 求证: k ≥ 7 k \geq 7 k7.

证明:这道题给人的直观感受就是证明 k ≤ 6 k \leq 6 k6不满足要求即可,因为第二问就有用到有穷数列连续几项的和最多有多少种情况

1.证明 k ≥ 6 k\geq6 k6

稍加思索,k项数列连续p项的和共有k-p+1种可能,也就是说k项数列连续几项的和最多 ∑ p = 1 k ( k − p + 1 ) = k + ( k − 1 ) + ⋯ + 1 = k ( k + 1 ) 2 \sum\limits_{p=1}^{k}(k-p+1)=k+(k-1)+\cdots+1=\frac{k(k+1)}{2} p=1k(kp+1)=k+(k1)++1=2k(k+1)项。

k ≤ 5 时 k \leq 5时 k5
∑ p = 1 k ( k − p + 1 ) = k + ( k − 1 ) + ⋯ + 1 = k ( k + 1 ) 2 ≤ 5 × 6 2 = 15 \sum\limits_{p=1}^{k}(k-p+1)=k+(k-1)+\cdots+1=\frac{k(k+1)}{2}\leq\frac{5\times6}{2}=15 p=1k(kp+1)=k+(k1)++1=2k(k+1)25×6=15,不可能表示1~20共20个数。、

所以 k ≥ 6 k\geq6 k6,接下来只需要证明 k = 6 k=6 k=6不成立即可。

2.证明 k = 6 k=6 k=6不成立

证明一个命题不成立,理所当然地使用反证法

a.证明有且仅有一个负数

假设Q为6项有穷数列,且为 20 − 20 - 20连续可表数列,则Q连续几项的和最多有 ≤ 6 × 7 2 = 21 \leq\frac{6\times7}{2}=21 26×7=21种情况,Q中连续几项的和可以表示1~20中的所有整数。

a 1 + a 2 + ⋯ + a 6 < 20 a_{1}+a_{2}+\cdots+a_{6}<20 a1+a2++a6<20但Q中连续若干项却可以表示20,说明 a 1 a_1 a1 a k a_k ak之中有负数(若全为正数,则任何连续项之和都小于20,与 Q为 20 − 20 - 20连续可表数列 矛盾),负数不在1~20中,所以负数至多有1个
(若有2个负数则至多只有19个 连续几项之和 为正,与其能表示1~20共20个整数矛盾)

b.证明该负数位于数列列首或列尾,不妨设于列首

为了进一步缩小可能的情况数(直至最后所有情况均不成立,相当于推出矛盾),下面证明这一个负数也不能出现在中间四项里
假如负数在中间四项中,则将数列Q分为一个正项、负数项、四个正项,或者两个正项、负数项、三个正项,或二者的对称情况。
因为 a 1 + a 2 + ⋯ + a 6 < 20 a_{1}+a_{2}+\cdots+a_{6}<20 a1+a2++a6<20,所以(负数项+左侧的正数之和或者右侧的正数之和)更加小于20,所以有一边(不妨设为左边)的正数之和为20,又因为 a 1 + a 2 + ⋯ + a 6 < 20 a_{1}+a_{2}+\cdots+a_{6}<20 a1+a2++a6<20,所以(负数项+右边的正数之和)小于0,那么就又产生了至少一个几项和为负数,同样会导致凑不出20种和为正数的情况,所以该负数不能出现在中间四项。

所以这个负数只能在首尾出现,由于“对称性”,实际上首尾是等价的,故不妨这个负数在首项,即 a 1 < 0 a_1<0 a1<0 a 2 a_2 a2 a 6 a_6 a6均为1~20间的互不相同的正整数,否则会导致凑不出20种和的情况。

c.该负数的一些限制条件

同理,也可以论证 a 1 > − a 2 a_1>-a_2 a1>a2,否则 a 1 + a 2 < = 0 ∉ { 1 , 2 , ⋯   , 20 } a_1+a_2<=0\notin\{1,2,\cdots,20\} a1+a2<=0/{1,2,,20},导致凑不出20种和的情况

然后你需要意识到, a 1 ≠ − a i , i ∈ { 2 , 3 , ⋯   , 6 } a_1\neq -a_i, i \in \{2,3,\cdots,6\} a1=ai,i{2,3,,6}。为什么呢?
假如 ∃ i ∈ { 2 , 3 , ⋯   , 6 } S . T . a 1 = − a i \exist i \in \{2,3,\cdots,6\} S.T. a_1=-a_i i{2,3,,6}S.T.a1=ai,若二者相邻则 a 1 + a 2 = 0 ∉ { 1 , 2 , ⋯   , 20 } a_1+a_2=0\notin\{1,2,\cdots,20\} a1+a2=0/{1,2,,20},若二者不相邻则 a 1 + a 2 + ⋯ + a i = a 2 + ⋯ + a i − 1 a_1+a_2+\cdots+a_i=a_2+\cdots+a_{i-1} a1+a2++ai=a2++ai1,浪费一个情况数,导致凑不出20种和的情况。
所以这个负数 a 1 a_1 a1身上的限制条件已经非常多了,既不能等于后面五项任何一项的相反数,又要绝对值比 a 2 a_2 a2小。

d.考察20、19的来源,确定尾项为1

接下来观察20的来源,因为20是最大的数,所以20必须来源于 a 2 + a 3 + a 4 + a 5 + a 6 = 20 a_2+a_3+a_4+a_5+a_6=20 a2+a3+a4+a5+a6=20

19也需要表示,若 a 1 + a 2 + ⋯ + a 6 = 19 a_1+a_2+\cdots+a_6=19 a1+a2++a6=19,则 a 1 = − 1 a_1=-1 a1=1,所以数列后五项不能存在1,那么为了产生1,必须有 a 2 = 2 , a 1 + a 2 = 1 a_2=2,a_1+a_2=1 a2=2,a1+a2=1,否则无法连续求和得到1。

这时数列长这个样子: − 1 , 2 , a 3 , a 4 , a 5 , a 6 -1,2,a_3,a_4,a_5,a_6 1,2,a3,a4,a5,a6

那么正好 a 3 + a 4 + a 5 + a 6 = 18 a_3+a_4+a_5+a_6=18 a3+a4+a5+a6=18,这四项均不小于3且互不相同,发现 3 + 4 + 5 + 6 = 18 3+4+5+6=18 3+4+5+6=18,所以这四项只能为3,4,5,6的某种排序, a 3 a_3 a3不能取3,4,5,否则a_1+a_2+a_3等于4或5或6,产生重复、矛盾,所以 a 3 = 6 a_3=6 a3=6 a 1 + a 2 + a 3 = 7 a_1+a_2+a_3=7 a1+a2+a3=7,所以3和4不能挨着, a 2 + a 3 = 8 a_2+a_3=8 a2+a3=8,所以3和5不能挨着,那没地方放3了,所以这种 a 1 + a 2 + ⋯ + a 6 = 19 a_1+a_2+\cdots+a_6=19 a1+a2++a6=19情况不成立

所以只剩 a 1 < − 1 a_1<-1 a1<1的情况,这时候 a 1 + a 2 + ⋯ + a 6 < 19 a_1+a_2+\cdots+a_6<19 a1+a2++a6<19 a 2 + a 3 + ⋯ + a 6 = 20 a_2+a_3+\cdots+a_6=20 a2+a3++a6=20
因为 a 2 + a 3 + a 4 + a 5 a_2+a_3+a_4+a_5 a2+a3+a4+a5 a 3 + a 4 + a 5 + a 6 a_3+a_4+a_5+a_6 a3+a4+a5+a6都不大于19,项数再减少就不大于17(因为至少去掉1和2)了,所以如果有19,必须出现在二者中,所以 a 2 a_2 a2 a 6 a_6 a6中有一项为1。
因为 − a 2 < a 1 < − 1 -a_2<a_1<-1 a2<a1<1,所以 a 2 a_2 a2不能为1,那么1就只能在 a 6 a_6 a6位置了。

现在数列的样子是: 负 数 a 1 , a 2 , a 3 , a 4 , a 5 , 1 负数a_1,a_2,a_3,a_4,a_5,1 a1,a2,a3,a4,a5,1

e.考虑18的来源,得到负数 a 1 = − 2 a_1=-2 a1=2

因为小的数可以生成的方式很多,比如 2 = 2 = 4 − 2 = 5 − 3 = 4 + 5 − 7 2=2=4-2=5-3=4+5-7 2=2=42=53=4+57,所以接着考虑大数18, a 2 + a 3 + a 4 + a 5 = 19 a_2+a_3+a_4+a_5=19 a2+a3+a4+a5=19,1已经出现过了,不能再等于 a 2 a_2 a2 a 5 a_5 a5,所以18不能是 a 2 a_2 a2 a 5 a_5 a5的子列生成的。

那就只可能是所有6个数之和,或带 a 1 a_1 a1且不带 a 6 a_6 a6的一串数,或带 a 6 a_6 a6且不带 a 1 a_1 a1的一串数求和生成的。

如果18是6个数之和,则 a 1 = − 2 a_1=-2 a1=2

如果带 a 1 a_1 a1且不带 a 6 a_6 a6,所有组合小于 a 2 + a 3 + a 4 + a 5 = 19 a_2+a_3+a_4+a_5=19 a2+a3+a4+a5=19,因为 a 6 = 1 a_6=1 a6=1出现过,所以 a 1 ≠ − 1 a_1\neq-1 a1=1 a 5 ≠ 1 a_5\neq1 a5=1,绝对值再大就小于18了,所以这种情况不成立;

如果带 a 6 a_6 a6且不带 a 1 a_1 a1,所有组合小于 a 2 + a 3 + a 4 + a 5 + a 6 = 20 a_2+a_3+a_4+a_5+a_6=20 a2+a3+a4+a5+a6=20,因为 a 6 = 1 a_6=1 a6=1出现过,只能是 a 3 + a 4 + a 5 + a 6 = 18 a_3+a_4+a_5+a_6=18 a3+a4+a5+a6=18,这样的话 a 2 = 2 a_2=2 a2=2 ∣ a 1 ∣ |a_1| a1 < 2 <2 <2,则 a 1 = − 1 = − a 6 a_1=-1=-a_6 a1=1=a6,与前述 a 1 a_1 a1不能是后五项的相反数矛盾,这种情况也不成立。

所以只能 a 1 = − 2 a_1=-2 a1=2

f.根据不能复现的限制条件证明 a 2 a_2 a2取任何值均不成立

此时数列长这个样子: − 2 , a 2 , a 3 , a 4 , a 5 , 1 -2,a_2,a_3,a_4,a_5,1 2,a2,a3,a4,a5,1,可以明显看出 a 2 > 4 a_2>4 a2>4,否则会产生 4 − 2 = 2 4-2=2 42=2 3 − 2 = 1 3-2=1 32=1,然后还可以不明显的看出 a 2 a_2 a2取任何值均不成立。

a 2 = 5 a_2=5 a2=5,由 a 2 + a 3 + a 4 + a 5 + a 6 = 20 a_2+a_3+a_4+a_5+a_6=20 a2+a3+a4+a5+a6=20,有 a 3 + a 4 + a 5 = 14 a_3+a_4+a_5=14 a3+a4+a5=14,不能有1或2或-2+5=3或5,所以最小是 4 + 6 + 7 = 17 > 14 4+6+7=17>14 4+6+7=17>14,矛盾,所以这种情况不成立;

a 2 = 6 a_2=6 a2=6,由 a 2 + a 3 + a 4 + a 5 + a 6 = 20 a_2+a_3+a_4+a_5+a_6=20 a2+a3+a4+a5+a6=20,有 a 3 + a 4 + a 5 = 13 a_3+a_4+a_5=13 a3+a4+a5=13,不能有1或2或 − 2 + 6 = 4 -2+6=4 2+6=4,所以最小是 3 + 5 + 6 = 14 > 12 3+5+6=14>12 3+5+6=14>12,矛盾,所以这种情况不成立;

a 2 = 7 a_2=7 a2=7,由 a 2 + a 3 + a 4 + a 5 + a 6 = 20 a_2+a_3+a_4+a_5+a_6=20 a2+a3+a4+a5+a6=20,有 a 3 + a 4 + a 5 = 12 a_3+a_4+a_5=12 a3+a4+a5=12,不能有1或2或 − 2 + 7 = 5 -2+7=5 2+7=5,所以最小是 3 + 4 + 6 = 13 > 12 3+4+6=13>12 3+4+6=13>12,矛盾,所以这种情况不成立;

a 2 ≥ 8 a_2 \geq 8 a28,由 a 2 + a 3 + a 4 + a 5 + a 6 = 20 a_2+a_3+a_4+a_5+a_6=20 a2+a3+a4+a5+a6=20,有 a 3 + a 4 + a 5 ≤ 11 a_3+a_4+a_5\leq11 a3+a4+a511,不能有1或2所以最小是 3 + 4 + 5 = 12 > 11 3+4+5=12>11 3+4+5=12>11,矛盾,所以这些情况均不成立。

到此,说明 k = 6 k=6 k=6 20 − 20- 20连续可表数列不存在

综上所述, k ≥ 7 k \geq 7 k7
QED.

三、思考与评价

前两问照例就是在白送分(我高考那年为什么第二问不是白送的qwq),主要评价第三问

作为北京高考最后一题,没有太往偏怪难的方向考,不要求掌握什么特别的不等式或什么精妙的tricks,而是考察思维的严谨性和灵活性,从头到尾基本只使用了小学生就会的两位数以内的整数加减法。所以我觉得这道题出得挺好

但是做这道题需要明晰的思路、坚定的信念、极强的耐心,不因一种方法/思路过程太长而半途而废,对考生是极大的挑战,考虑到考场外的用时都得两三小时,我估计今年北京高考数学又没有满分了。

考场上(III)就能写多少写多少吧,至少 k ≥ 6 k\geq6 k6以及有且仅有一项为负数且它在首尾考场上肯定来得及考虑到,都是按步骤给分的。

  • 3
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 8
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

kbr19thu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值