ENVI对Landsat8遥感影像水体提取

本文详细介绍了如何使用ENVI软件对Landsat8遥感影像进行辐射定标、FLAASH大气校正及水体提取。首先进行辐射定标,设置辐射率数据类型和FLAASH参数,然后进行大气校正。接着,利用波段运算计算水体指数,并通过Band Threshold to ROI选择阈值生成水体ROI。最后,通过Build Mask生成二值图像完成水体提取。过程中需要注意阈值的调整,尤其是在冰雪地区,可能需要多次尝试才能得到理想结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

辐射定标

1、选择File-Open…-打开文件所在位置

2、选择多光谱.txt文件打开

  1. 3、在Toolbox中,选择Radiometric Correction > Radiometric Calibration,对文件对话框中选择多光谱数据。打开Radiometric Calibration面板。(选择MultiSpecreal点击OK键)

4、在Radiometric Calibration面板中,设置以下参数:

• 定标类型(Calibration Type):辐射率数据Radiance

• 单击Apply FLAASH Settings按钮,自动设置FLAASH大气校正工具需要的数据类型,包括储存顺序(Interleave):BIL或者BIP;数据类型(Data Type):Float;辐射率数据单位调整系数(Scale Factor):0.1。

      

5、设置输出路径和单位名,单击OK执行辐射定标。

6、显示辐射定标结果图像,选择Display>Profiles>Spectral查看波谱曲线&#x

<think>好的,我现在需要帮助用户解决在ENVI中使用SVM分类算法进行水体提取的问题。首先,我得回顾一下用户提供的引用内容,确保自己正确理解步骤和可能遇到的问题。 用户提供的引用1详细描述了在ENVI中使用SVM分类的步骤,包括选择ROI、处理过程中可能出现的错误提示以及保存结果的注意事项。引用2提到了监督分类的具体操作,如建立兴趣区、分类后的处理步骤和背景颜色去除的方法。引用3则比较了监督与非监督分类的区别,并提到了精度分析的重要性。 用户的需求明确是使用SVM在ENVI中进行水体提取的方法或教程,因此我需要整合这些引用中的信息,提供一个清晰的步骤指南。同时,用户可能遇到的问题,比如ROI选择不足导致的错误、路径中的中文问题,以及分类后的后处理步骤,都需要在回答中提及。 首先,我应该分步骤说明流程,从数据准备到ROI创建、分类执行,再到结果后处理。每一步需要结合引用中的具体操作,比如引用1中提到的ROI命名使用英文,避免BUG;引用2中的子集数据提取和背景颜色调整。此外,用户可能对参数设置不太清楚,需要解释SVM中的关键参数如核函数和惩罚系数,虽然引用中没有详细说明,但可能需要根据一般经验给出建议。 另外,用户可能遇到的常见问题,如分类结果中出现噪点或ROI选择不具代表性,需要给出解决方案,比如后处理中的聚类分析或调整ROI数量。同时,要提醒用户注意文件路径不要有中文,避免ENVI出错,这点在引用1中提到过。 最后,生的相关问题需要围绕用户可能的后续需求,比如参数优化、精度评估、与其他方法的对比,以及处理大影像的技巧,这些都能帮助用户进一步深入使用SVM分类。 总结来说,回答需要结构清晰,步骤详细,涵盖准备、执行、后处理及注意事项,并预见到用户可能的问题,提供解决方案。同时,引用对应的参考资料,确保信息准确可靠。</think>以下是ENVI中使用支持向量机(SVM)进行水体提取的详细教程: ### 一、操作步骤 1. **数据准备** - 确保影像已完辐射定标、大气校正等预处理 - 建议使用多光谱影像(如Landsat 8的蓝、绿、近红外波段组合) 2. **创建ROI训练样本** - 右击影像文件名选择`New Region Of Interest` - 建立`water`类:通过多边形工具勾选水体区域(建议选择5-10个典型样本) - 创建非水体类:如`vegetation`、`urban`、`bare_soil`等[^1] - 每个类别样本量建议>50像素,且需覆盖不同光照条件下的特征 3. **SVM分类设置** ```python # SVM参数设置参考(ENVI内部算法逻辑) 核函数类型 = 径向基函数(RBF) 惩罚系数C = 100 # 控制分类边界的严格程度 伽马参数γ = 0.1 # 控制决策边界曲率 ``` - 在`Toolbox > Classification > Supervised Classification > Support Vector Machine`中选择影像 - 勾选所有ROI类别,输出路径避免中文[^1] 4. **分类后处理** - 使用`Classification > Post Classification > Majority/Minority Analysis`去除零星噪点 - 通过`Region of Interest > Subset Data from ROIs`提取研究区域[^2] - 修改未分类区域颜色:右击图层选择`Edit Class Colors`将未分类设为白色[^2] ### 二、关键参数说明 $$ \text{SVM决策函数} = \text{sign}(\sum_{i=1}^n \alpha_i y_i K(\mathbf{x}_i,\mathbf{x}) + b) $$ 其中$K(\mathbf{x}_i,\mathbf{x})$为核函数,ENVI默认采用RBF核: $$ K(\mathbf{x}_i,\mathbf{x}) = \exp(-\gamma \|\mathbf{x}_i - \mathbf{x}\|^2) $$ ### 三、常见问题解决方案 1. **"Need at least 2 ROIs"报错** - 确保已创建至少2个不同类别的ROI - 检查ROI管理器中的类别是否被正确勾选 2. **分类结果破碎** - 增加训练样本的多样性 - 调整SVM参数:增大C值(范围10-1000)增强分类严格度 3. **混合像元干扰** - 尝试引入纹理特征(通过`Texture feature`工具生) - 结合NDWI指数预处理: $$ \text{NDWI} = \frac{\rho_{\text{Green}} - \rho_{\text{NIR}}}{\rho_{\text{Green}} + \rho_{\text{NIR}}} $$ ### 四、精度验证 建议使用混淆矩阵验证: $$ \text{总体精度} = \frac{\sum_{i=1}^n X_{ii}}{N} \times 100\% $$ 通过`Classification > Post Classification > Confusion Matrix`生精度报告[^3]
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值