随机森林调参思想在乳腺癌上的应用

随机森林调参思想在乳腺癌上的应用

1、需要导入的库

from sklearn.datasets import load_breast_cancer
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.model_selection import cross_val_score
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

2、导入数据集,探索数据集

data=load_breast_cancer()
data.data.shape (569,30)
# data.target.shape (569,)
# 乳腺癌数据集有569条数据,共有30个参数

3、进行一次简单的建模

rfc=RandomForestClassifier(n_estimators=100,random_state=90)
score_pre=cross_val_score(rfc,data.data,data.target,cv=10).mean()

score_pre  #未调参准确率也很高 0.9648809523809524

4、随机森林调整的第一步:无论如何先来调n_estimators

#第一次的学习曲线,可以先用来帮助我们划定范围,我们取每十个数作为一个阶段,来观察n_estimators的变化如何
#引起模型整体准确率的变化
scorel=[]
for i in range(0,200,10):
    rfc=RandomForestClassifier(n_estimators=i+1,
                              n_jobs=-1,
                              random_state=90)
    score=cross_val_score(rfc,data.data,data.target,cv=10).mean()
    scorel.append(score)
print(max(scorel),(scorel.index(max(scorel))*10)+1)
plt.figure(figsize=[20,5])
plt.plot(range(1,201,10),scorel)
plt.show()

​ 可以看到在estimators=71时,取得最佳的准确率。

5、在确定好的范围内进一步细化学习曲线

scorel=[]
for i in range(65,75):
    rfc=RandomForestClassifier(n_estimators=i,
                              n_jobs=-1,
                              random_state=90)
    score=cross_val_score(rfc,data.data,data.target,cv=10).mean()
    scorel.append(score)
print(max(scorel),([*range(65,75)][scorel.index(max(scorel))]))
plt.figure(figsize=[20,5])
plt.plot(range(65,75),scorel)
plt.show()

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-6OmgSvEF-1625652186050)(C:\Users\s1678\AppData\Roaming\Typora\typora-user-images\image-20210707174408503.png)]

​ 在细分的区间内,我们可以知道在estimators=73时,取得最佳的分类准确率。

6、 为网格搜索做准备,书写网格搜索的参数

# 有一些参数是没有参照的,很难说清一个范围,这种情况下我们使用学习曲线,看趋势
# 从曲线跑出的结果中选取一个更小的区间,再跑曲线
# param_grid = {'n_estimators':np.arange(0, 200, 10)}
# param_grid = {'max_depth':np.arange(1, 20, 1)} 
# param_grid = {'max_leaf_nodes':np.arange(25,50,1)}
# 有一些参数是可以找到一个范围的,或者说我们知道他们的取值和随着他们的取值,模型的整体准确率会如何变化,这
# 样的参数我们就可以直接跑网格搜索
# param_grid = {'criterion':['gini', 'entropy']}
# param_grid = {'min_samples_split':np.arange(2, 2+20, 1)}
# param_grid = {'min_samples_leaf':np.arange(1, 1+10, 1)}
# param_grid = {'max_features':np.arange(5,30,1)}

7、对模型整体准确率的影响程度进行调参,首先调整max_depth

#调整max_depth
param_grid = {'max_depth':np.arange(1, 20, 1)}

# 一般根据数据的大小来进行一个试探,乳腺癌数据很小,所以可以采用1~10,或者1~20这样的试探
# 但对于像digit recognition那样的大型数据来说,我们应该尝试30~50层深度(或许还不足够
#   更应该画出学习曲线,来观察深度对模型的影响

rfc = RandomForestClassifier(n_estimators=39
                             ,random_state=90
                             )
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.data,data.target)

​ 限制max_depth,是让模型变得简单,把模型向左推,而模型整体的准确率下降了,即整体的泛化误差上升了,这说明模型现在位于图像左边,即泛化误差最低点的左边(偏差为主导的一边)。当模型位于图像左边时,我们需要的是增加模型复杂度(增加方差,减少偏差)的选项,因此max_depth应该尽量大,min_samples_leaf和min_samples_split都应该尽量小。这几乎是在说明,除了max_features,我们没有任何参数可以调整了,因为max_depth,min_samples_leaf和min_samples_split是剪枝参数,是减小复杂度的参数。在这里,我们可以预言,我们已经非常接近模型的上限,模型很可能没有办法再进步了。

8、调整max_features

#调整max_features
param_grid = {'max_features':np.arange(5,30,1)} #总共有30个特征

# max_features是唯一一个即能够将模型往左(低方差高偏差)推,也能够将模型往右(高方差低偏差)推的参数。我
# 们需要根据调参前,模型所在的位置(在泛化误差最低点的左边还是右边)来决定我们要将max_features往哪边调。
# 现在模型位于图像左侧,我们需要的是更高的复杂度,因此我们应该把max_features往更大的方向调整,可用的特征
# 越多,模型才会越复杂。max_features的默认最小值是sqrt(n_features),因此我们使用这个值作为调参范围的
# 最小值。

rfc = RandomForestClassifier(n_estimators=39
                             ,random_state=90
                             )
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.data,data.target)

9、 调整min_samples_leaf

#调整min_samples_leaf
param_grid={'min_samples_leaf':np.arange(1, 1+10, 1)}


rfc = RandomForestClassifier(n_estimators=39
                             ,random_state=90
                             ,max_features=6
                             )
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.data,data.target)

10、 尝试min_samples_split

# 调整min_samples_split
param_grid={'min_samples_split':np.arange(2, 2+20, 1)}
rfc = RandomForestClassifier(n_estimators=39
                             ,random_state=90
                             ,max_features=6
                            )
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.data,data.target)

11、 最后尝试一下criterion

#调整Criterion
param_grid = {'criterion':['gini', 'entropy']}
rfc = RandomForestClassifier(n_estimators=39
                             ,random_state=90
                             ,max_features=6
                             )
GS = GridSearchCV(rfc,param_grid,cv=10)
GS.fit(data.data,data.target)

12、 调整完毕,总结出模型的最佳参数

rfc = RandomForestClassifier(n_estimators=39,random_state=90,max_features=6)
score = cross_val_score(rfc,data.data,data.target,cv=10).mean()
score
score - score_pre #0.0035401002506265655

​ 可以看到经过调参之后,模型准确率提高0.3%。

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值