拉普拉斯变换

拉普拉斯变换

一、引入

  进行傅里叶变换需要函数在整个数轴上有定义,然而在很多实际应用中,以时间 t t t为自变量的函数往往在 t < 0 t<0 t<0时无需考虑;此外,应用傅里叶变换需要函数在 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)上绝对可积,这是一个很强的条件。为应对以上两个问题,采用如下方法:
  用单位阶跃函数 u ( t ) u(t) u(t)和指数衰减函数 e − β t ( β > 0 ) e^{-\beta t}(\beta >0) eβt(β>0)乘以函数 φ ( t ) : φ ( t ) u ( t ) e − β t ( β > 0 ) \varphi(t):\varphi(t)u(t)e^{-\beta t}(\beta>0) φ(t):φ(t)u(t)eβt(β>0),再进行傅里叶变换: G β ( ω ) = ∫ − ∞ + ∞ φ ( t ) u ( t ) e − β t e − j ω t d t = ∫ 0 + ∞ f ( t ) e − ( β + j ω ) t d t = ∫ 0 + ∞ f ( t ) e − s t d t G_{\beta}(\omega)=\int_{-\infty}^{+\infty}\varphi(t)u(t)e^{-\beta t}e^{-j\omega t}dt=\int_0^{+\infty}f(t)e^{-(\beta+j\omega)t}dt=\int_0^{+\infty}f(t)e^{-st}dt Gβ(ω)=+φ(t)u(t)eβtetdt=0+f(t)e(β+)tdt=0+f(t)estdt
其中 s = β + j ω , f ( t ) = φ ( t ) u ( t ) s=\beta+j\omega,f(t)=\varphi(t)u(t) s=β+,f(t)=φ(t)u(t),设 F ( s ) = G β ( ω ) = G β ( s − β j ) F(s)=G_{\beta}(\omega)=G_{\beta}(\frac{s-\beta}{j}) F(s)=Gβ(ω)=Gβ(jsβ),则 F ( s ) = ∫ 0 + ∞ f ( t ) e − s t d t F(s)=\int_0^{+\infty}f(t)e^{-st}dt F(s)=0+f(t)estdt

二、拉普拉斯变换的定义

  设函数 f ( t ) f(t) f(t)是定义在 [ 0 , + ∞ ] [0,+\infty] [0,+]上的实值函数,如果对于复参数 s = β + j ω s=\beta+j\omega s=β+,积分 F ( s ) = ∫ 0 + ∞ f ( t ) e − s t d t F(s)=\int_0^{+\infty}f(t)e^{-st}dt F(s)=0+f(t)estdt在复平面 s s s的某一区域内收敛,则称 F ( s ) F(s) F(s) f ( t ) f(t) f(t)的拉普拉斯变换,记为 F ( s ) = L [ f ( t ) ] F(s)=\mathscr{L}[f(t)] F(s)=L[f(t)] f ( t ) f(t) f(t) F ( s ) F(s) F(s)的拉普拉斯逆变换,记为 f ( t ) = L − 1 [ F ( s ) ] f(t)=\mathscr{L}^{-1}[F(s)] f(t)=L1[F(s)]

三、拉普拉斯变换的存在定理

  若 f ( t ) f(t) f(t)满足如下条件:

(1)在 t ⩾ 0 t\geqslant0 t0的任一有限区间上分段连续;

(2)当 t → + ∞ t\rightarrow+\infty t+时, f ( t ) f(t) f(t)的增长速度不超过某一指数函数,即存在常数 M > 0 M>0 M>0 C ⩾ 0 C\geqslant0 C0,使 ∣ f ( t ) ∣ ⩽ M e C t , 0 < t < + ∞ |f(t)|\leqslant Me^{Ct},0<t<+\infty f(t)MeCt,0<t<+成立。

  则 f ( t ) f(t) f(t)的拉普拉斯变换 F ( s ) = ∫ 0 + ∞ f ( t ) e − s t d t F(s)=\int_0^{+\infty}f(t)e^{-st}dt F(s)=0+f(t)estdt在平面 R e ( s ) > C Re(s)>C Re(s)>C上一定存在,此时右端积分绝对收敛且一致收敛,且在此半平面内, F ( s ) F(s) F(s)为解析函数。

四、拉普拉斯变换的性质

在下文中默认 L [ f ( t ) ] = F ( s ) , L [ g ( t ) ] = G ( s ) \mathscr{L}[f(t)]=F(s),\mathscr{L}[g(t)]=G(s) L[f(t)]=F(s),L[g(t)]=G(s)

1、线性性质

L [ α f ( t ) + β g ( t ) ] = α F ( s ) + β G ( s ) \mathscr{L}[\alpha f(t)+\beta g(t)]=\alpha F(s)+\beta G(s) L[αf(t)+βg(t)]=αF(s)+βG(s)

L − 1 [ α F ( s ) + β G ( s ) ] = α f ( t ) + β g ( t ) \mathscr{L}^{-1}[\alpha F(s)+\beta G(s)]=\alpha f(t)+\beta g(t) L1[αF(s)+βG(s)]=αf(t)+βg(t)

2、相似性质

对任一常数 a > 0 a>0 a>0,有 L [ f ( a t ) ] = 1 a F ( s a ) \mathscr{L}[f(at)]=\frac{1}{a}F(\frac{s}{a}) L[f(at)]=a1F(as)

3、微分性质

(1) L [ f ′ ( t ) ] = s F ( s ) − f ( 0 ) \mathscr{L}[f^{\prime}(t)]=sF(s)-f(0) L[f(t)]=sF(s)f(0)

   L [ f ( n ) ( t ) ] = s n F ( s ) − s n − 1 f ( 0 ) − s n − 2 f ′ ( 0 ) − ⋯ − f ( n − 1 ) ( 0 ) \mathscr{L}[f^{(n)}(t)]=s^nF(s)-s^{n-1}f(0)-s^{n-2}f^{\prime}(0)-\cdots-f^{(n-1)}(0) L[f(n)(t)]=snF(s)sn1f(0)sn2f(0)f(n1)(0)

(2) F ′ ( s ) = − L [ t f ( t ) ] F^{\prime}(s)=-\mathscr{L}[tf(t)] F(s)=L[tf(t)]

   F ( n ) ( s ) = ( − 1 ) n L [ t n f ( t ) ] F^{(n)}(s)=(-1)^n\mathscr{L}[t^nf(t)] F(n)(s)=(1)nL[tnf(t)]

4、积分性质

(1)积分的像函数

L [ ∫ 0 t f ( t ) d t ] = 1 s F ( s ) \mathscr{L}[\int_0^tf(t)dt]=\frac{1}{s}F(s) L[0tf(t)dt]=s1F(s)

L [ ∫ 0 t d t ∫ 0 t d t ⋯ ∫ 0 t f ( t ) d t ] = 1 s n F ( s ) \mathscr{L}[\int^t_0dt\int_0^tdt\cdots\int_0^tf(t)dt]=\frac{1}{s^n}F(s) L[0tdt0tdt0tf(t)dt]=sn1F(s) 注:等号左边方括号内需要进行 n n n次积分

(2)像函数的积分

∫ s ∞ F ( s ) d s = L [ f ( t ) t ] \int_s^\infty F(s)ds=\mathscr{L}[\frac{f(t)}{t}] sF(s)ds=L[tf(t)]

∫ s ∞ d s ∫ s ∞ d s ⋯ ∫ s ∞ F ( s ) d s = L [ f ( t ) t n ] \int_s^\infty ds\int_s^{\infty}ds\cdots\int_s^{\infty}F(s)ds=\mathscr{L}[\frac{f(t)}{t^n}] sdssdssF(s)ds=L[tnf(t)]

5、延迟性质

对任意非负实数 τ \tau τ L [ f ( t − τ ) ] = e − s τ F ( s ) \mathscr{L}[f(t-\tau)]=e^{-s\tau}F(s) L[f(tτ)]=esτF(s)

6、位移性质

L [ e a t f ( t ) ] = F ( s − a ) \mathscr{L}[e^{at}f(t)]=F(s-a) L[eatf(t)]=F(sa) a a a为一复常数

7、周期函数的像函数

f ( t ) f(t) f(t) [ 0 , + ∞ ] [0,+\infty] [0,+]内以 T T T为周期的函数,且 f ( t ) f(t) f(t)在一个周期内逐段光滑,则 L [ f ( t ) ] = 1 1 − e − s T ∫ 0 T f ( t ) e − s t d t \mathscr{L}[f(t)]=\frac{1}{1-e^{-sT}}\int_0^Tf(t)e^{-st}dt L[f(t)]=1esT10Tf(t)estdt

8、卷积与卷积定理

(1) f 1 ( t ) ∗ f 2 ( t ) = ∫ 0 t f 1 ( τ ) f 2 ( t − τ ) d τ ( t ⩾ 0 ) f_1(t)*f_2(t)=\int_0^tf_1(\tau)f_2(t-\tau)d\tau (t\geqslant0) f1(t)f2(t)=0tf1(τ)f2(tτ)dτ(t0)

(2) L [ f 1 ( t ) ∗ f 2 ( t ) ] = F 1 ( s ) ⋅ F 2 ( s ) \mathscr{L}[f_1(t)*f_2(t)]=F_1(s)\cdot F_2(s) L[f1(t)f2(t)]=F1(s)F2(s)

五、拉普拉斯逆变换

f ( t ) = 1 2 π j ∫ β − j ∞ β + j ∞ F ( s ) e s t d s ( t > 0 ) f(t)=\frac{1}{2\pi j}\int^{\beta+j\infty}_{\beta-j\infty}F(s)e^{st}ds (t>0) f(t)=2πj1βjβ+jF(s)estds(t>0)

上式为反演积分公式,其积分路径是 s s s平面上的一条直线 R e   s = β Re\,s=\beta Res=β

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值