保存图片的常用方法
1.PIL的保存图片方法
path = r"./001.jpg" #图片路径
img = Image.open(path) #打开图片
img.save("1.jpg") #将图片保存为1.jpg
2.opencv保存图片
path = r"./001.jpg" #图片路径
#img = cv.imdecode(np.fromfile("动漫人物_0.jpg",np.uint8))#含有中文路径的图片打开
img = cv2.imread(path) #读取图片
cv2.imwrite("1.jpg",img) #将图片保存为1.jpg
3.Matplotlib保存图片的方法
import matplotlib.pyplot as plt
import cv2
import os
images_path = "./minist_img"
for i,img_name in enumerate(os.listdir(images_path)):
img_path = os.path.join(images_path,img_name)
img = cv2.imread(img_path) #numpy的数组形式,色彩空间为BGR
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) #
plt.subplot(2,2,i+1),plt.imshow(img)
plt.savefig("./minist.jpg")
plt.show()
4.pytorch保存图片
save_image(real_img,os.path.join(save_img,f"{epoch}_real.jpg"),nrow=10,padding=2,pad_value=255)
参数:
- tensor:4D张量,形状为(B x C x H x W),分别表示样本数,通道数,图像高度,图像宽度
- nrow:每行的图片数量,默认值为8
- padding:相邻图像之间的间隔。默认值为2
- normalize:如果为True,则把图像的像素值通过range指定的最大值和最小值归一化到0-1。默认为False
- range:元组,用于指定最大值和最小值。默认使用图像像素的最大最小值。
- sacle_each:如果为True,就单独对每张图像进行normalize;如果是False,统一对所有图像进行normalize。默认为Flase
- pad_value:float,上述padding会使得图像之间留出空隙,默认为0