Java实现 快速排序(递归)及两种优化

选择一个基准,一般以第一个为基准,找到它的位置(把比他大的放到右边,比他小的放到左边),这时数据就被分为了两半,再对两边执行重复的操作(递归),直到只剩一个元素。


时间复杂度:

最佳Ω(NlogN) : 最佳情况下, 每轮划分操作将数组划分为等长度的两个子数组;哨兵划分操作为线性时间复杂度 O(N) ;递归轮数共 O(logN) 。

平均 Θ(NlogN) : 对于随机输入数组,哨兵划分操作的递归轮数也为O(logN) 。

最差 O(N^2):对于某些特殊输入数组,每轮哨兵划分操作都将长度为 N 的数组划分为长度为 1和 N - 1的两个子数组,此时递归轮数达到 N 。

空间复杂度 O(N) :

快速排序的递归深度最好与平均皆为 NlogN ;

输入数组完全倒序下,达到最差递归深度 N 。

void quickSort(int[] nums, int l, int r) {
        // 子数组长度为 1 时终止递归
        if (l >= r) return;
        // 哨兵划分操作
        int i = partition(nums, l, r);
        // 递归左(右)子数组执行哨兵划分
        quickSort(nums, l, i - 1);
        quickSort(nums, i + 1, r);
    }

    


    int partition(int[] nums, int l, int r) {
        // 以 nums[l] 作为基准数
        int i = l, j = r;
        while (i < j) {
            while (i < j && nums[j] >= nums[l]) j--;
            while (i < j && nums[i] <= nums[l]) i++;
            swap(nums, i, j);
        }
        swap(nums, i, l);
        return i;
    }

    void swap(int[] nums, int i, int j) {
        // 交换 nums[i] 和 nums[j]
        int tmp = nums[i];
        nums[i] = nums[j];
        nums[j] = tmp;
    }

    @Test
    public void main() {
        // 调用
        int[] nums = {4, 1, 3, 2, 5};
        quickSort(nums, 0, nums.length - 1);
        for (int num : nums) {
            System.out.println(num);
        }
    }

优化1:随机基准数

由于快速排序每轮选取「子数组最左元素」作为「基准数」,因此在输入数组 完全有序 或 完全倒序 时, partition() 每轮只划分一个元素,达到最差时间复杂度 O(N^2)
 

因此,可使用 随机函数 ,每轮在子数组中随机选择一个元素作为基准数,这样就可以极大概率避免以上劣化情况。

值得注意的是,由于仍然可能出现最差情况,因此快速排序的最差时间复杂度仍为 O(N^2)。

仅需修改partition()方法:

int partition(int[] nums, int l, int r) {
    // 在闭区间 [l, r] 随机选取任意索引,并与 nums[l] 交换
    int ra = (int)(l + Math.random() * (r - l + 1));
    swap(nums, l, ra);
    // 以 nums[l] 作为基准数
    int i = l, j = r;
    while (i < j) {
        while (i < j && nums[j] >= nums[l]) j--;
        while (i < j && nums[i] <= nums[l]) i++;
        swap(nums, i, j);
    }
    swap(nums, i, l);
    return i;
}


优化2:

Tail Call 
由于普通快速排序每轮选取「子数组最左元素」作为「基准数」,因此在输入数组 完全倒序 时, partition() 的递归深度会达到 N ,即 最差空间复杂度 为 O(N)。

每轮递归时,仅对 较短的子数组 执行哨兵划分 partition() ,就可将最差的递归深度控制在 O(logN) (每轮递归的子数组长度都≤ 当前数组长度 1/2 ),即实现最差空间复杂度 O(logN) 。

仅需修改quickSort()函数即可:

void quickSort(int[] nums, int l, int r) {
        // 子数组长度为 1 时终止递归
        while (l < r) {
            // 哨兵划分操作
            int i = partition(nums, l, r);
            // 仅递归至较短子数组,控制递归深度
            if (i - l < r - i) {
                quickSort(nums, l, i - 1);
                l = i + 1;
            } else {
                quickSort(nums, i + 1, r);
                r = i - 1;
            }
        }
    }

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值