文章目录

文章获取: https://openreview.net/pdf?id=ju_Uqw384Oq
代码地址: https://github.com/thuml/Time-Series-Library
摘要
时间序列分析在天气预报、异常检测、动作识别等领域有着广泛的应用。时间变化建模是大量分析任务中常见的关键问题。以前的方法试图直接从1D时间序列中完成这一点,由于复杂的时间模式,这是极具挑战性的。通过对时间序列多周期性的观察,我们将复杂的时间变化分解为多个周期内变化和周期间变化。为了解决一维时间序列在表示能力上的局限性,我们将一维时间序列转换为一组基于多个周期的二维张量,从而将时间变化分析扩展到二维空间。这种变换可以将周期内变化和周期间变化分别嵌入到二维张量的列和行中,使得二维变化可以很容易地用二维核来建模。从技术上讲,我们提出了以时间块作为时间序列分析的任务通用骨干的时间网。TimesBlock可以自适应地发现多周期性,并通过参数高效的初始块从转换后的二维张量中提取复杂的时间变化。我们提出的TimesNet在五个主流时间序列分析任务中达到了一致的最先进水平,包括短期和长期预测、imputation、分类和异常检测。
问题分析
数据层面
数据特征上,不同于自然语言、视频等序列数据,时间序列中单个时刻仅保存了一些标量,其关键信息更多地被蕴含在时序变化中
方法层面
近年来,应用于时间序列分析的方法大致可以分为基于卷积的方法和基于transformer的方法
-
基于卷积的方法主要关注捕捉临近时刻之间的变化,在长期依赖上建模能力不足。
</