top-k准确率计算

文章介绍了Top-k概念在分类任务中的应用,特别是在神经网络输出与目标标签比较时的作用。Top-k准确率计算了预测结果中最大概率的前k个类别是否包含正确标签的比例。提供的代码示例展示了如何在PyTorch中实现这一计算过程,用于评估模型性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

top-k概念

该算法主要用于分类任务中,网络output为分类标签的one-hot编码,target为正确标签(一个值)
例如
对一个图像进行分类,类别数为5,该图像标签为3,即target为3,网络output为[0.1, 0.3, 0.25, 0.2, 0.15]
output中最大值下标为2,第二大值下标为3
若只计算top-1,则分类错误;若计算top-2,则分类正确,因为预测值最大的前两个包含正确标签

top-k准确率就是用来计算预测结果中概率最大的前k个结果包含正确标签的占比,平时使用最多的acc即为top-1准确率。

实现代码

逐行解释

— 的 shape 为(batch_size * maxk),pred 的 shape 为(batch_size * maxk)

topk=(1,5)  # 预测top-1和top-5
maxk = max(topk) # 按照最大topk值构建张量
batch_size = target.size(0)  # 取 batch size
# topk返回两个张量:values和indices,分别对应前k大值的数值和索
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值