实验内容
- 离散信号的分析
离散时间非周期信号 x ( n ) x(n) x(n)生成,时域观察,频域分析
- 系统响应分析
生成实验用的输入序列 x ( n ) x(n) x(n)和系统单位冲激响应序列 h ( n ) h(n) h(n)、时域离散信号、系统和系统响应分析、卷积定理的验证
实验要求
- 附上所有信号序列,系统单位冲激响应及响应序列的时域和频域特性曲线,并对结果进行分析和解释
- 计算线性卷积、 z z z变换和系统函数
- 编程计算 D T F T DTFT DTFT
- 演示采样定理,即采样频率大于信号最高频率两倍才能避免频域混叠现象
代码实现
基本离散信号
- 冲激信号
n=-5:5;
x=n==0;%n=0时x=1
stem(n,x,'filled');
axis([-5 5 0 1.1*max(x)]);
xlabel('time');ylabel('range')
- 阶跃信号
n=-5:5;
x=n>=0;%n>=0时x=1
stem(n,x,'filled');
axis([-5 5 0 1.1*max(x)]);
xlabel('time');ylabel('range')
- 实指数序列
function [x,n]=realindex(ns,nf,a)
% a实指数的底数,ns序列起点,nf序列终点
% x实指数序列的值,n序列位置
n=ns:nf;
x=a.^n;
stem(n,x,'filled');
if(a<0)
axis([ns nf -1.1*max(x) 1.1*max(x)]);
elseif(a>0)
axis([ns nf 0 1.1*max(x)]);
end
->
subplot(1,2,1)
[x,n]=realindex(-5,5,2);
subplot(1,2,2)
[x,n]=realindex(-5,5,-2);
- 虚指数序列
function [x,n]=complexindex(ns,nf,w,q)
% ns序列起点,nf序列终点
% x复指数序列的值,n序列位置
n=ns:nf;
x=exp(1i*w+q).^n;
xr=real(x);%实部
xi=imag(x);%虚部
xa=abs(x);%模
xn=angle(x);%相角
subplot(2,2,1),stem(n,xr,'filled'),title('实部');
subplot(2,2,2),stem(n,xi,'filled'),title('虚部');
subplot(2,2,3),stem(n,xa,'filled'),title('模');
subplot(2,2,4),stem(n,xn,'filled'),title('相角');
end
>>[x,n]=complexindex(-5,5,0.5,-0.2)
x =
列 1 至 3
-2.1777 - 1.6268i -0.9262 - 2.0237i 0.1289 - 1.8176i
列 4 至 6
0.8060 - 1.2553i 1.0719 - 0.5856i 1.0000 + 0.0000i
列 7 至 9
0.7185 + 0.3925i 0.3622 + 0.5641i 0.0388 + 0.5474i
列 10 至 11
-0.1870 + 0.4086i -0.2947 + 0.2202i
n =
-5 -4 -3 -2 -1 0 1 2 3 4 5
系统响应
栗子-01
系统的差分方程:
y ( n − 2 ) + 2 y ( n − 1 ) + 77 y ( n ) = x ( n ) y(n-2)+2y(n-1)+77y(n)=x(n) y(n−2)+2y(n−1)+77y(n)=x(n)
设一个系统输入
x ( n ) = 10 (