实验目的
- 加深DFT算法原理和基本性质的理解(因为FFT只是DFT的一种快速算法,所以FFT的运算结果必然满足DFT的基本性质)
- 熟悉FFT算法原理和FFT子程序的应用
- 学习用FFT对连续信号和时域进行谱分析的方法,了解可能出现的分析误差及其原因,以便在实际中正确应用FFT
实验步骤
例如
x 1 ( n ) = R 4 ( n ) x 2 ( n ) = { n + 1 ( 0 ≤ n ≤ 3 ) 8 − n ( 4 ≤ n ≤ 7 ) 0 其 他 n x 3 ( n ) = { 4 − n ( 0 ≤ n ≤ 3 ) n − 3 ( 4 ≤ n ≤ 7 ) 0 其 他 n x 4 ( n ) = c o s n π 4 x 5 ( n ) = s i n n π 8 x_1(n)=R_4(n)\\ x_2(n)= \begin{cases} n+1&(0\leq n\leq 3)\\ 8-n&(4\leq n\leq 7)\\ 0&其他n \end{cases}\\ x_3(n)= \begin{cases} 4-n&(0\leq n\leq 3)\\ n-3&(4\leq n\leq 7)\\ 0&其他n \end{cases}\\ x_4(n)=cos\frac{n\pi}{4}\\ x_5(n)=sin\frac{n\pi}{8} x1(n)=R4(n)x2(n)=⎩⎪⎨⎪⎧n+18−n0(0≤n≤3)(4≤n≤7)其他nx3(n)=⎩⎪⎨⎪⎧4−nn−30(0≤n≤3)(4≤n≤7)其他nx4(n)=cos4nπ