- 博客(75)
- 收藏
- 关注
原创 本地部署voice fake变声工具
然后在在Anaconda \envs\py3.12-torch2.5.1\Scripts”目录栏下输入“cmd”回车激活命令窗口,并在该窗口输入“conda activate py3.12-torch2.5.1”回车激活 py3.12-torch2.5.1环境。(2)在用户目录中找到.cache文件夹, 如果没有这个文件夹就创建一个. 注意, 文件夹的名字是.cache , 即那个"."也是文件夹名的一部分,不要漏掉。" 这行文字的时候, 就说明启动成功了. 此时,在浏览器访问。
2025-04-01 17:55:14
399
原创 本地部署QWEN2.5大模型
然后在在Anaconda \envs\py3.12-torch2.5.1\Scripts”目录栏下输入“cmd”回车激活命令窗口,并在该窗口输入“conda activate py3.12-torch2.5.1”回车激活 py3.12-torch2.5.1环境。将下载好的模型解压到text-generation-webui下的models目录中, 解压后,目录中会存在一个名为 Qwen2.5-0.5B-Instruct 的文件。(1)从github仓库克隆源码。
2025-04-01 17:48:03
331
原创 本地部署 pyvideotrans(视频翻译配音工具)
语音识别选择faster-whisper(本地),模型选择预先下载并保存的medium,然后选择好要处理的视频以及保存到的位置,这里我选择了一个名为why not的英文演讲视频,保存在桌面_vedio_out文件下。将附件中faster-medium.7z 和 faster-small.7z解压到项目中的models目录下, 解压后,目录中应该存在 models--Systran--faster-whisper-small。en.m4a|.wav = 原始视频中的音频文件(包含所有背景音和人声)
2025-04-01 17:40:27
518
原创 信号与系统-用FFT对信号作频谱分析
(1)学习用FFT对连续信号和时域离散信号进行谱分析的方法(2)了解可能出现的分析误差及其原因(3)正确应用FFT用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重要问题是频谱分辨率D和分析误差。频谱分辨率直接和FFT的变换区间N有关,因为FFT能够实现的频率分辨率是2π/N,因此要求2π/N≤N。可以根据此式选择FFT的变换区间 N。
2025-02-08 16:29:31
584
原创 信号与系统-系统响应及系统稳定性
系统的稳态输出是指当 n―>∞时,系统的输。是否都是有界输出.或者检查系统的单位脉冲响应满足绝对可和的条件。方法是在系统的输入端加入单位阶跃序列,如果系统的输出趋近一个常数(包括。如果系统稳定,则信号加入系统后, 系统输出的开始一段称为暂态效应,本实验仅在时域求解。在时域中,描述系统特性的方法是差分方程和单位脉冲响应。在时域中,描写系统特性的方法是差分方程赫尔单位脉冲响应,在频域中。系统的时域特性指的是系统的线性时不变性质、因果性和稳定性。系统的稳定性是指对任意有界的输入信号,系统都能得到有界的系统响。
2025-02-08 16:22:36
961
原创 matlab数字图像与机器视觉*目标与背景的分割与提取(篮球)
1.主要要求从图像中检索出篮球。2.建议方法1)对待检测图片进行色彩空间变换;2)利用色度信息进行分割;3)区域修复;4)目标提取。3.难点篮球上的黑色花纹对边缘检测、色彩检测均造成干扰。
2025-02-08 16:10:35
112
原创 matlab数字图像与机器视觉-目标与背景的分割与提取(红苹果)
提取红苹果1)将已知图像进行消噪处理2)对彩色图像进行目标和背景分析3)通过阈值法将图像进行分割4)提取目标1)确定目标区域的特征;2)边界修复与区域分割。
2025-02-08 16:03:07
450
原创 python-知识图谱-神雕侠女人物关系
(1)加强对知识图谱原理的理解和掌握(2)加强对知识图谱开发和实践强化学习算法知识图谱三元组、NetworkX网络。现有神雕侠女人物关系数据列表,请使用开发知识图谱并进行展示。1.定义神雕侠女人物关系三元组,包括人物A、人物B和他们之间的关系R。例如,“郭靖”、“黄蓉”和“夫妻”是一个三元组。2.使用NetworkX库创建一个空的有向图。3.将所有人物添加到图中作为节点。4.添加所有人物之间的关系边作为图中的有向边。5.使用Matplotlib绘制图形并展示知识图谱。
2025-02-08 15:48:07
256
原创 python统计武侠小说中前20名出现最高频率的人物排名
通过字典推导式,从统计结果中提取出characters列表中人物名字的出现次数,存入character_counts字典。使用jieba.analyse.textrank方法对文本进行关键词提取,提取前20个关键词及其权重。根据检测到的编码格式,使用decode方法将二进制数据解码为文本,忽略无法解码的字符。使用jieba.cut方法对解码后的文本进行分词,得到分词后的生成器对象words。2.对TF-IDF算法和TextRank算法实现关键词的词频计算与排列的理解与应用。
2025-02-08 15:45:12
399
原创 xception实现猫狗识别
训练准确率(Training Accuracy):在微调阶段,训练准确率继续上升,在较高水平保持相对稳定,这说明放开部分层的参数训练后,模型能进一步学习到更有利于分类的特征,继续优化对训练数据的分类效果。训练准确率(Training Accuracy):随着训练轮次(Epoch)的增加,训练准确率整体呈现上升的趋势,这表明模型在不断学习训练数据中的特征,对训练集中的样本分类能力逐渐增强。但是,如果您遇到类别不平衡的问题,可以考虑使用加权二元交叉熵,通过为不同类别的样本分配不同的权重来调整损失。
2025-02-08 14:50:50
936
原创 DCGAN_Anime 与 WGAN_Anime_faces
掌握采用 DCGAN生成新的Anime卡通图片1.指对Anime数据集生成新的图片样本的任务,借鉴DCGAN_minst实验和WGAN_GP_Anime的实验结果,实现DCGAN_Anime生成新图片样本的实验。2.借鉴DCGAN_mins、WGAN_GP_Anime教学案例,合理DCGAN_Anime实战中epochs\损失函数的设置加载MNIST数据集,并显示其中的第一张图像:测试模型的可行性。随机生成1x100的噪声序列传入模型并查看结果。每 15个epoch保存一次模型,开始时较为模糊。
2025-02-08 14:19:32
214
原创 LSTM_IMBD 实战
5.分别采用self.state0 = [tf.zeros([batchsz, units]),tf.zeros([batchsz, units])],layers.LSTMCell(units, dropout=0.5)实现自定义myLSTM模型;利用keras.layers.Bidirectional(keras.layers.LSTM(units = 64,return_sequences=True,dropout=0.5))搭建LSTM两层双向顺序模型的方法,并针对IMBD数据集,并编程实现。
2025-02-08 14:08:28
277
原创 VGG 13 CIFAR10实战
应用tf.keras.layers.Conv2D/keras.layers.MaxPooling2搭建VGG13网络,网络结构为卷积层[(128,(3,3))+卷积层(64,(3,3))+池化层+dropout(0.5)]*3+Flatten+Dense(128)+Dense(64),Fashion_minst的识别。4.搭建应用网络结构为[(128,(3,3))+卷积层(64,(3,3))+池化层+dropout(0.5)]*3+Flatten+Dense(128)+Dense(64)。
2025-02-08 13:56:31
376
原创 Tf.keras ANN模型多分类实战(fashion mnist)
通过使用Tf.keras.Sequential搭建实现非线性逻辑回归模型。并理解针对问题空间如何设计网络结构,以及网络结构涉及到的优化器、损失函数的选择,回调函数的使用1.利用data=pd.read_csv加载数据集。2 用data.head()查看前5行数据3 掌握使用data.iloc对data数据进行切片处理,注意数据的维度特征。
2025-02-08 13:51:13
192
原创 Tf.keras ANN模型搭建及逻辑回归实战(信誉卡问题)
通过使用Tf.keras.Sequential搭建实现非线性逻辑回归模型。并理解针对问题空间如何设计网络22结构,以及网络结构涉及到的优化器、损失函数的选择,回调函数的使用1.利用data=pd.read_csv加载数据集。2 用data.head()查看前5行数据3 掌握使用data.iloc对data数据进行切片处理,注意数据的维度特征。
2025-02-08 13:42:51
213
原创 Tf.keras ANN模型搭建及回归预测实战(广告与销量)
通过使用Tf.keras.Sequential搭建实现非线性回归的神经网络模型。并理解针对问题空间如何设计网络结构,以及网络结构涉及到的优化器、损失函数的选择,回调函数的使用。1.利用data=pd.read_csv加载数据集。2.用data.head()查看前5行数据3.用plt.scatter绘制data各维度特征与销量的分布特征图.4.掌握使用data.iloc对data数据进行切片处理,注意数据的维度特征。
2025-02-08 13:38:18
220
原创 感知机与激活函数实验
1.理解从感知机构建神经网络的思想2.应用numpy相关函数实现与门、与非门、或门感知机3.应用多层感知机实现与或门4.理解激活函数的作用,并实现阶跃函数、sigmiod函数、ReLU、Tanh函数、softmax函数等常见的激活函数1.写出与门、与非门、或门感知机数学公式,并编程实现和绘图展示2.写出与或门的数学公式,并编程实现和绘图展示3.写出阶跃函数、sigmiod函数、ReLU、Tanh函数、softmax函数等常见激活函数的数学公式,并编程实现和绘图展示。
2025-02-08 11:58:52
905
原创 深度学习 Tensorflow 与 Pytorch 环境搭建
查看电脑 GPU 型号win+R 打开 cmd,输入 nvidia-smi 运行其对应的 CUDA 版本号为 12.6,那么12.6版本及其之前版本的 CUDA都是可以安装的。根据电脑 GPU 的型号,从官网 https://developer.nivdia.com/cuda-gpus 确认你电脑 GPU 所支持对应的 CUDA 和CUDNN 版本号。网上有许多安装方法大同小异,这里不再赘述,这里我选择的如下:CUDA版本号为11.1;CUDNN选择历史版本(;
2024-09-26 13:35:23
1371
2
原创 C语言-Graham扫描算法-凸包问题
重庆理工大学(CQUT)某大学ACM集训队,不久前向学校申请了一块空地,成为自己的果园。全体队员兴高采烈的策划方案,种植了大批果树,有梨树、桃树、香蕉……。后来,发现有些坏蛋,他们暗地里偷摘果园的果子,被ACM集训队队员发现了。因此,大家商量解决办法,有人提出:修筑一圈篱笆,把果园围起来,但是由于我们的经费有限,必须尽量节省资金,所以,我们要找出一种最合理的方案。由于每道篱笆,无论长度多长,都是同等价钱。所以,大家希望设计出来的修筑一圈篱笆的方案所花费的资金最少。
2024-01-12 15:33:12
1045
1
原创 C语言-贪心、回溯算法-快递终端送货分配系统
重庆理工大学(CQUT)时间复杂度为O(n),内层有两个for,第一个for为挑选未被访问的顶点的最短距离,时间复杂度为O(n),第二个for为在与选中顶点有直接路径的顶点中对比距离是否需要更新,时间复杂度为O(n),所以总的时间复杂度为O(n^2)。从result数组选择最小值,则该值就是源点s到该值对应的顶点的最短路径,并且把该点加入然后,新加入的顶点是否可以到达其他顶点并且通过该顶点到达其他点的路径长度是否比源点直接到达短,如果是,那么就替换这些顶点在result中的值。
2024-01-12 14:59:37
961
原创 Python-Graham扫描算法-凸包问题
重庆理工大学(CQUT)每棵果树分别用二维坐标来表示,进行定位。选用了Graham扫描算法,根据之前学过的数学原理我们知道y值最小的坐标点一定在构成的凸包上,首先找到y坐标的点为枢纽点(如果有多个点拥有最小 y 坐标,则选择最左边的点),将其余坐标点与枢纽点的极角(与x轴正方向的夹角)从小到大排序(如果两点有相同的极角,则将距离枢纽点较远的排在前面),然后用一个栈,将枢纽点和排好序的第一个点入栈,依次将剩余的点与栈顶的两点做叉乘比较,最后输出比较后的凸包上的点。
2024-01-12 14:24:47
568
原创 C语言-动态规划-最小路径和
重庆理工大学(CQUT)请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。因为路径 1→3→1→1→1 的总和最小。一个机器人每次只能向下或者向右移动一步。给定一个包含非负整数的。
2024-01-11 17:08:42
808
原创 C语言-动态规划-零钱兑换
重庆理工大学(CQUT)如果没有任何一种硬币组合能组成总金额,返回。表示不同面额的硬币;你可以认为每种硬币的数量是无限的。计算并返回可以凑成总金额所需的。
2024-01-11 17:02:04
878
原创 C语言-贪心算法-背包问题-珠子放入背包
重庆理工大学(CQUT)分配方案 [1,3],[5,1] 得到最大得分 (1+3) + (5+1) = 10。分配方案 [1],[3,5,1] 得到最小得分 (1+1) + (3+1) = 6。所以差值为 10 - 6 = 4。唯一的分配方案为 [1],[3]。请你按照如下规则将所有的珠子放进。最大最小得分相等,所以返回 0。请你返回所有分配方案中,
2024-01-11 16:51:24
884
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人