- 博客(8)
- 收藏
- 关注
原创 On the Design Fundamentals of Diffusion Models: A Survey
Transformer也是一种encoder-decoder架构的网络模型,并且它的编码器和解码器都具有自注意力机制,这可以使Transformer无视输入数据的空间位置,并且可以区分输入之间的重要性。由于高斯分布没有给定数据样本的信息,而一些其他的方法考虑到训练数据的统计数据(如均值和方差),这种方法减少了潜在的差异性并且提高了收敛性。由于原始图像的分布于T时刻图像的分布差异巨大,在逆向过程训练去噪网络的过程中,这种巨大的差异可能导致逆向过程中优化效率低下和收敛缓慢。优化逆方差有助于去噪网络的拟合。
2024-03-08 09:07:30 905 1
原创 Deconstructing Denoising Diffusion Models for Self-Supervised Learning
使用逐片PCA将干净图像(左)投影到潜在空间上,其中添加了噪声(中)。学习自动编码器来预测去噪图像(右)。这种简单的架构在很大程度上类似于经典的DAE(主要区别是将噪声添加到潜在的DAE中),并实现了有竞争力的自监督学习性能。在解构的过程中,可以了解到DDM的各个组成部分如何影响自监督的表征学习。DAE的成功主要局限于涉及基于掩蔽破坏的场景,基本没有报告指出具有加性高斯噪声的DAE变体的结果。masking-based和removing additive。解构DDM,将其转化为经典的去噪自动编码器DAE。
2024-02-17 21:15:08 483 1
原创 Multimodal super-resolved q-space deep learning
但由于dMRI scans和HR images的分辨率不同(对于patch size为M³的LR稀疏表示,HR模态的patch size为(rM)³),需要首先重新排列HR模态的patches,即将HR模态的patch重新排列为具有r³个channel的M³大小的patch(使得LR和HR的分辨率相同),以便沿着信道级联馈送到第二个网格模块。使用现有的patch-based策略时,input patch中不同位置的信息会同等地用于计算HR组织微观结构,然而不同体素可能对最终的估计有者不同的贡献。
2023-10-04 21:23:20 114 1
原创 GAMES102
上述函数可以看做一个神经网络,输入为x和1,权值为a和b,激活函数为高斯函数,通过该神经网络可以更新权值a和b。如果n->+∞,Bₙ(f,x)收敛到f(x),即当采样足够密集时,伯恩斯坦函数可以接近实际的函数。病态矩阵:对系数矩阵的元素或解发生很小的扰动后,方程的解会出现较大的变化。由于基函数的权性,伯恩斯坦函数相当于对这些点进行加权计算。一般的高斯函数可以通过标准高斯函数经过伸缩和平移变换得到。σ越大,函数图像越矮胖,σ越小,函数图像越瘦高;条件数大的话,系统的解很不稳定。
2023-07-14 20:46:08 240 1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人