查看张量的形状

dim,shape,size,numel

1. torch.Tensor.dim
dim的作用是返回张量的维数

import torch
a = torch.rand((3,4))  #生成随机数
a.dim()

在这里插入图片描述

2.torch.Tensor.shape
shape的作用是返回张量的形状

import torch
a = torch.rand((3,4))
a.shape

在这里插入图片描述

3.torch.Tensor.size
shape的作用是返回张量的形状,可指定dim返回某一维度的大小

import torch
a = torch.rand((2,3,4))
print(a.size())
print(a.size(dim=0))  #维度的指标是从0开始
print(a.size(dim=2))

在这里插入图片描述

4.torch.Tensor.numel
numel的作用是返回张量中元素的数量

import torch
a = torch.rand((2,3,4))
print(a.numel())  #2×3×4=24
#除此之外还可以使用torch.numel()
print(torch.numel(a))

在这里插入图片描述

总结

上述几种方法在实践中会经常使用,查看张量的维度等

*Note,带括号和不带括号的区别在于,不带括号说明它是一个属性,而带括号说明它是一个方法。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hj_caas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值