一、Python时间序列小波分析——实例分析

小波分析是在Fourier分析基础上发展起来的一种新的时频局部化分析方法。小波分析的基本思想是用一簇小波函数系来表示或逼近某一信号或函数。
小波分析原理涉及到傅里叶变换,并有多种小波变换,有点点小复杂。但是不会原理没关系,只要会应用并解释就可以。
在时间序列分析中,小波分析主要用于时间序列的消噪和滤波,信息量系数和分形维数的计算,突变点的检测和周期成分的识别以及多时间尺度的分析等。

小波分析通常以matlab软件为主,具体可以参考 小波系数等值线图和小波方差图绘制教学,视频教学可以参考 全网最简单的小波系数等值线图和小波方差图绘制小白教学
matlab大多数人是不会用滴,而且安装、上手慢,不如试试Python实现小波分析。
最近在做项目中使用小波分析做时间序列分析,从零开始,学习过程还是有点痛苦,经过学习,已经初步能够解释说明输出图,特此记录一下,供大家参考。
在学习中曾经想在某宝找人做,结果要价600元,一下激发了我的征服欲,赚了自己600元,哈哈哈。
Python上手简单,实现方便。PyWavelets 是一个免费的开源库,用于 Python 中的小波变换。全网对于小波分析使用python进行实例分析解释说明几乎没有,下面一步一步的介绍,给大家省600元。

pip install pycwt   #安装

PyWavelets 的主要特点是:

  • 1D、2D 和 nD 正向和反向离散小波变换(DWT 和 IDWT)
  • 一维、二维和 nD 多级 DWT 和 IDWT
  • 一维和二维稳态小波变换(Undecimated Wavelet Transform)
  • 一维和二维小波包分解和重建
  • 一维连续小波变换
  • 计算小波和缩放函数的近似值
  • 超过 100 个内置小波滤波器并支持自定义小波
  • 单精度和双精度计算
  • 真实而复杂的计算
  • 与 Matlab Wavelet Toolbox ™ 兼容的结果
    PyWavelets给出了一个例子,我感觉解释说明不清晰。
from __future__ import division
import numpy
from matplotlib import pyplot

import pycwt as wavelet
from pycwt.helpers import find

url = 'http://paos.colorado.edu/research/wavelets/wave_idl/nino3sst.txt'
dat = numpy.genfromtxt(url, skip_header=19)
title = 'NINO3 Sea Surface Temperature'
label = 'NINO3 SST'
units = 'degC'
t0 = 1871.0
dt = 0.25  # In years

N = dat.size
t = numpy.arange(0, N) * dt + t0

p = numpy.polyfit(t - t0, dat, 1)
dat_notrend = dat - numpy.polyval(p, t - t0)
std = dat_notrend.std()  # Standard deviation
var = std ** 2  # Variance
dat_norm = dat_notrend / std  # Normalized dataset

mother = wavelet.Morlet(6)
s0 = 2 * dt  # Starting scale, in this case 2 * 0.25 years = 6 months
dj = 1 / 12  # Twelve sub-octaves per octaves
J = 7 / dj  # Seven powers of two with dj sub-octaves
alpha, _, _ = wavelet.ar1(dat)  # Lag-1 autocorrelation for red noise

wave, scales, freqs, coi, fft, fftfreqs = wavelet.cwt(dat_norm, dt, dj, s0, J, mother)
iwave = wavelet.icwt(wave, scales, dt, dj, mother) * std

power = (numpy.abs(wave)) ** 2
fft_power = numpy.abs(fft) ** 2
period = 1 / freqs

power /= scales[:, None]
signif, fft_theor = wavelet.significance(1.0, dt, scales, 0, alpha,
                                         significance_level=0.95,
                                         wavelet=mother)
sig95 = numpy.ones([1, N]) * signif[:, None]
sig95 = power / sig95

glbl_power = power.mean(axis=1)
dof = N - scales  # Correction for padding at edges
glbl_signif, tmp = wavelet.significance(var, dt, scales, 1, alpha,
                                        significance_level=0.95,               dof=dof,
                                        wavelet=mother)
sel = find((period >= 2) & (period < 8))
Cdelta = mother.cdelta
scale_avg = (scales * numpy.ones((N, 1))).transpose()
scale_avg = power / scale_avg  # As in Torrence and Compo (1998) equation 24
scale_avg = var * dj * dt / Cdelta * scale_avg[sel, :].sum(axis=0)
scale_avg_signif, tmp = wavelet.significance(var, dt, scales, 2, alpha,
                                             significance_level=0.95,
                                             dof=[scales[sel[0]],
                                                  scales[sel[-1]]],
                                             wavelet=mother)


# Prepare the figure
pyplot.close('all')
pyplot.ioff()
figprops = dict(figsize=(11, 8), dpi=72)
fig = pyplot.figure(**figprops)

# First sub-plot, the original time series anomaly and inverse wavelet
# transform.
ax = pyplot.axes([0.1, 0.75, 0.65, 0.2])
ax.plot(t, iwave, '-', linewidth=1, color=[0.5, 0.5, 0.5])
ax.plot(t, dat, 'k', linewidth=1.5)
ax.set_title('a) {}'.format(title))
ax.set_ylabel(r'{} [{}]'.format(label, units))

# Second sub-plot, the normalized wavelet power spectrum and significance
# level contour lines and cone of influece hatched area. Note that period
# scale is logarithmic.
bx = pyplot.axes([0.1, 0.37, 0.65, 0.28], sharex=ax)
levels = [0.0625, 0.125, 0.25, 0.5, 1, 2, 4, 8, 16]
bx.contourf(t, numpy.log2(period), numpy.log2(power), numpy.log2(levels),
            extend='both', cmap=pyplot.cm.viridis)
extent = [t.min(), t.max(), 0, max(period)]
bx.contour(t, numpy.log2(period), sig95, [-99, 1], colors='k', linewidths=2,
           extent=extent)
bx.fill(numpy.concatenate([t, t[-1:] + dt, t[-1:] + dt,
                           t[:1] - dt, t[:1] - dt]),
        numpy.concatenate([numpy.log2(coi), [1e-9], numpy.log2(period[-1:]),
                           numpy.log2(period[-1:]), [1e-9]]),
        'k', alpha=0.3, hatch='x')
bx.set_title('b) {} Wavelet Power Spectrum ({})'.format(label, mother.name))
bx.set_ylabel('Period (years)')
#
Yticks = 2 ** numpy.arange(numpy.ceil(numpy.log2(period.min())),
                           numpy.ceil(numpy.log2(period.max())))
bx.set_yticks(numpy.log2(Yticks))
bx.set_yticklabels(Yticks)

# Third sub-plot, the global wavelet and Fourier power spectra and theoretical
# noise spectra. Note that period scale is logarithmic.
cx = pyplot.axes([0.77, 0.37, 0.2, 0.28], sharey=bx)
cx.plot(glbl_signif, numpy.log2(period), 'k--')
cx.plot(var * fft_theor, numpy.log2(period), '--', color='#cccccc')
cx.plot(var * fft_power, numpy.log2(1./fftfreqs), '-', color='#cccccc',
        linewidth=1.)
cx.plot(var * glbl_power, numpy.log2(period), 'k-', linewidth=1.5)
cx.set_title('c) Global Wavelet Spectrum')
cx.set_xlabel(r'Power [({})^2]'.format(units))
cx.set_xlim([0, glbl_power.max() + var])
cx.set_ylim(numpy.log2([period.min(), period.max()]))
cx.set_yticks(numpy.log2(Yticks))
cx.set_yticklabels(Yticks)
pyplot.setp(cx.get_yticklabels(), visible=False)

# Fourth sub-plot, the scale averaged wavelet spectrum.
dx = pyplot.axes([0.1, 0.07, 0.65, 0.2], sharex=ax)
dx.axhline(scale_avg_signif, color='k', linestyle='--', linewidth=1.)
dx.plot(t, scale_avg, 'k-', linewidth=1.5)
dx.set_title('d) {}--{} year scale-averaged power'.format(2, 8))
dx.set_xlabel('Time (year)')
dx.set_ylabel(r'Average variance [{}]'.format(units))
ax.set_xlim([t.min(), t.max()])

pyplot.show()

在这里插入图片描述

后续将以自己的数据集对输出图进行解释说明,其中输出图包括小波系数实部等值线图,小波系数方差图,小波系数模的平方图,以及主周期趋势图,分析不同时间尺度下的时间周期。

  • 18
    点赞
  • 112
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 5
    评论
Python时间序列小波相干分析是一种用于研究两个时间序列之间的关系的方法。小波相干分析可以显示出在不同时间周期上,两个时间序列之间的相关性如何。这通过计算小波交叉谱和小波相干谱来实现。 小波交叉谱显示了两个时间序列在不同频率上的相关性,可以帮助我们确定在哪些时期,两个时间序列具有相似的周期信号。而小波相干谱则显示了两个时间序列在不同时间周期和频率上的相关性,可以帮助我们确定在哪些周期段的信号上,两个时间序列的相关性如何。这里的相关性是指绝对值。 在Python中,我们可以使用pycwt包来实现时间序列的小波相干分析。具体的代码和数据可以在GitHub上找到,这个包的作者是Sebastian Krieger和Nabil Freij等人。通过使用这个包,我们可以生成小波交叉谱和小波相干谱,并通过箭头表示对应信号的相位差。 因此,Python时间序列小波相干分析提供了一种强大的工具,可以帮助我们研究和分析两个时间序列之间的关系。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [Python实现小波相干和小波交叉](https://blog.csdn.net/weixin_45577825/article/details/131231760)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [Python在大数据方面的应用前景](https://download.csdn.net/download/milk416666/88264587)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [时间序列小波分析](https://download.csdn.net/download/fuyanghuzui/11221053)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

hj_caas

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值