141. 环形链表
题目:给你一个链表的头节点 head ,判断链表中是否有环。
如果链表中有某个节点,可以通过连续跟踪 next 指针再次到达,则链表中存在环。 为了表示给定链表中的环,评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。注意:pos 不作为参数进行传递 。仅仅是为了标识链表的实际情况。
如果链表中存在环 ,则返回 true 。 否则,返回 false 。
链接 https://leetcode.cn/problems/linked-list-cycle
个人思路
- 循环,把每个结点保存在列表或者集合中,判断结点是否存在该集合中,如果循环结束都没结点存在集合中则说明没有环
# Definition for singly-linked list.
# class ListNode:
# def __init__(self, x):
# self.val = x
# self.next = None
class Solution:
def hasCycle(self, head: Optional[ListNode]) -> bool:
gather = set()
cur = head
while cur:
if cur in gather:
return True
else:
gather.add(cur)
cur = cur.next
return False
但官方的比我的快很多:
class Solution:
def hasCycle(self, head: ListNode) -> bool:
seen = set()
while head:
if head in seen:
return True
seen.add(head)
head = head.next
return False
复杂度分析
时间复杂度:O(N),其中 N 是链表中的节点数。最坏情况下我们需要遍历每个节点一次。
空间复杂度:O(N),其中 N 是链表中的节点数。主要为哈希表的开销,最坏情况下我们需要将每个节点插入到哈希表中一次。
官方思路
- 快慢指针(「Floyd 判圈算法」(又称龟兔赛跑算法))
(1)假想「乌龟」和「兔子」在链表上移动,「兔子」跑得快,「乌龟」跑得慢。当「乌龟」和「兔子」从链表上的同一个节点开始移动时,如果该链表中没有环,那么「兔子」将一直处于「乌龟」的前方;如果该链表中有环,那么「兔子」会先于「乌龟」进入环,并且一直在环内移动。等到「乌龟」进入环时,由于「兔子」的速度快,它一定会在某个时刻与乌龟相遇,即套了「乌龟」若干圈。
(2)我们可以根据上述思路来解决本题。具体地,我们定义两个指针,一快一满。慢指针每次只移动一步,而快指针每次移动两步。初始时,慢指针在位置 head,而快指针在位置 head.next。这样一来,如果在移动的过程中,快指针反过来追上慢指针,就说明该链表为环形链表。否则快指针将到达链表尾部,该链表不为环形链表。
class Solution:
def hasCycle(self, head: ListNode) -> bool:
if not head or not head.next:
return False
slow = head
fast = head.next
while slow != fast:
if not fast or not fast.next:
return False
slow = slow.next
fast = fast.next.next
return True
作者:LeetCode-Solution
链接:https://leetcode.cn/problems/linked-list-cycle/solution/huan-xing-lian-biao-by-leetcode-solution/