LeetCode 141. 环形链表 | Python

141. 环形链表


题目


给定一个链表,判断链表中是否有环。

为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。

示例 1:

输入:head = [3,2,0,-4], pos = 1
输出:true
解释:链表中有一个环,其尾部连接到第二个节点。

示例 1 | 图示

示例 2:

输入:head = [1,2], pos = 0
输出:true
解释:链表中有一个环,其尾部连接到第一个节点。

示例 2 | 图示

示例 3:

输入:head = [1], pos = -1
输出:false
解释:链表中没有环。

示例 3 | 图示

进阶:

  • 你能用 O(1)(即,常量)内存解决此问题吗?

解题思路


思路:哈希表、快慢指针

在这里,我们直接看示例,如果链表存在环,那么某一个结点被访问的次数将不止一次。

哈希表

那么,我们使用哈希表来存储访问的节点,判读依据如下:

  • 当某个结点在被访问时,发现存在于哈希表中,那么我们可以判断该链表为环形链表。
  • 否则继续访问,直至结点为空。

具体的代码见【代码实现 # 哈希表】

快慢指针

题目最后进阶部分,提出是否能够用常量空间复杂度解决问题。因为前面的方法,定义哈希表存储需要额外的空间。

在这里,我们用快慢指针的思路来解决。具体如下:

  • 定义两个指针 p、q,其中一个快指针 p 每次移动两步,慢指针 q 每次移动一步;
  • 如果不存在环,那么快指针会先一步到达尾部,那么我们就可以返回 False;
  • 如果存在环,那么快指针将会再次到达链表的某个结点,最终快慢指针将会重合,返回 True。

具体的代码见【代码实现 # 快慢指针】

代码实现


# 哈希表
# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None

class Solution:
    def hasCycle(self, head: ListNode) -> bool:
        hash_map = {}
        
        # 结点非空时
        while head:
            # 先判断结点是否已经存在于哈希表中
            # 存在,则表示存在环
            if head in hash_map:
                return True
            # 记录访问的节点,访问过都标记为 1
            hash_map[head] = 1
            head = head.next
        
        return False

# 快慢指针
# Definition for singly-linked list.
# class ListNode:
#     def __init__(self, x):
#         self.val = x
#         self.next = None

class Solution:
    def hasCycle(self, head: ListNode) -> bool:
        # 定义快慢指针
        # 快指针 p 每次移动两步,慢指针 q 每次移动一步
        p = head
        q = head
        
        while p and p.next:
            q = q.next
            p = p.next.next
            if p == q:
                return True
        return False

实现结果


实现结果 | 哈希表

实现结果 | 快慢指针

欢迎关注


公众号 【书所集录

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值