【探索AI】二十九-计算机视觉(四)图像分类与目标检测

本文介绍了图像分类和目标检测的基本概念,重点讨论了CNN模型(如AlexNet、VGGNet和ResNet)的应用,以及R-CNN系列(包括FastR-CNN和FasterR-CNN)和一阶段检测器(YOLO和SSD)在目标检测中的进展。同时,文章详细解释了评估指标如准确率、召回率、精确率和mAP,并提供了使用Keras和ResNet50进行图像分类的示例代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像分类与目标检测

概述

一、图像分类

1. 概念

图像分类是计算机视觉中的一个基本任务,目的是将输入的图像自动划分到预定义的类别中。例如,给定一张图像,系统能够识别出这是一张狗、猫、汽车还是其他物体的图片。

2. 使用CNN进行分类

卷积神经网络(CNN)是图像分类任务中最常用的模型。CNN通过卷积层、池化层、全连接层等结构,能够自动提取图像中的特征并进行分类。

3. 经典CNN模型

  • AlexNet:由Alex Krizhevsky等人于2012年提出,赢得了当年ImageNet图像分类竞赛的冠军,标志着深度学习在图像分类领域的崛起。
  • VGGNet:由牛津大学计算机视觉组和Google DeepMind公司研究员共同研发,探索了卷积神经网络的深度与其性能之间的关系。
  • ResNet(残差网络):由微软亚洲研究院的Kaiming He等人提出,通过引入残差块解决了深度神经网络中的梯度消失和表示瓶颈问题。

二、目标检测

1. 概念

目标检测不仅要识别图像中的物体类别,还要给出物体在图像中的具体位置(通常用矩形框表示)。

2. R-CNN系列

  • R-CNN:区域卷积神经网络,它首先使用选择性搜索等方法生成一系列可能包含物体的候选区域,然后对每个候选区域使用CNN提取特征,最后通过SVM等分类器进行分类。
  • Fast R-CNN:针对R-CNN速度慢的问题进行了优化,提出了ROI Pooling层,实现了端到端的训练。
  • Faster R-CNN:在Fast R-CNN的基础上引入了RPN(区域提议网络),实现了候选区域的自动提取,进一步提高了速度和准确性。

3. 一阶段检测器

  • YOLO(You Only Look Once):将目标检测视为回归问题,直接在单个网络中预测所有物体的位置和类别。YOLO速度快,但对小物体的检测效果可能不佳。
  • SSD(Single
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值